Skip to main content
Log in

Dynamics of the Species Structure of Testate Amoeba Assemblages in a Waterbody-to-Mire Succession in the Holocene: A Case Study of Mochulya Bog, Kaluga Oblast, Russia

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Testate amoebae are widely used in palaeoecological studies as indicators (proxies) of environmental conditions in mires and freshwater ecosystems. The goal of this work was to identify patterns in the dynamics of the species composition of testate amoeba assemblages during a “waterbody–mire” succession. This study was performed using multiproxy analysis of the deposits in Mochulya Bog, Kaluga oblast, European Russia. To explain changes in the species composition of testate amoebae, we used data on the plant macrofossil composition, peat humification, and the loss on ignition, together with the results of radiocarbon dating and pollen analysis. The deposit was formed by the sediments of the waterbody, with rich fen and poor fen. The age at the base of the deposits was 4100 cal. yr. BP. Changes in the species composition of testate amoeba assemblages were largely determined by local vegetation, especially Sphagnum mosses, which significantly transform the environment. The transformation of the waterbody into a rich fen may have most likely occurred as a result of climatic (allogeneic) factors: short-term drying and wildfires that might have led to the overgrowth of the shore. The transformation of the rich fen to a poor fen could have been related to the effects of both autogenic (accumulation of the deposits) and allogeneic factors (decrease in human activity in the adjacent area).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Beug, H.J., Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, Munich: Verlag Friedrich Pfeil, 2004.

    Google Scholar 

  2. Blaauw, M., Methods and code for ‘classical’ age-modelling of radiocarbon sequences, Quat. Geochronol., 2010, vol. 5, no. 5, pp. 512–518.

    Article  Google Scholar 

  3. Blaauw, M. and Christen, J.A., rbacon: Age-depth modelling using Bayesian statistics, R package version 2.3.9.1, 2019. https://CRAN.R-project.org/package=rbacon.

  4. Bobrov, A.A., Historical dynamics of lake-bog ecosystems and succession of testate amoebae (Testacea), Zool. Zh., 2003, vol. 82, no. 2, pp. 215–223.

    Google Scholar 

  5. Booth, R.K., Ireland, A.W., LeBoeuf, K., and Hessl, A., Late Holocene climate-induced forest transformation and peatland establishment in the central Appalachians, Quat. Res., 2016, vol. 85, pp. 204–210.

    Article  Google Scholar 

  6. Bray, J.R. and Curtis, J.T., An ordination of the upland forest communities of southern Wisconsin, Ecol. Monogr., 1957, vol. 27, no. 4, pp. 325–349.

    Article  Google Scholar 

  7. Chambers, F.M., Beilman, D.W., and Yu, Z., Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland, Mires Peat, 2010, vol. 7, pp. 1–10.

    Google Scholar 

  8. Chambers, F.M., Booth, R.K., De Vleeschouwer, F., Lamentowicz, M., Le Roux, G.G., et al., Development and refinement of proxy-climate indicators from peats, Quat. Int., 2012, vol. 268, pp. 21–33.

    Article  Google Scholar 

  9. Dean, W., Jr., Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods, J. Sediment. Res., 1974, vol. 44, pp. 242–248.

    CAS  Google Scholar 

  10. Elliott, S.M., Roe, H.M., and Patterson, R.T., Testate amoebae as indicators of hydroserial change: an 8500 year record from Mer Bleue Bog, eastern Ontario, Canada, Quat. Int., 2012 vol. 268, pp. 128–144.

    Article  Google Scholar 

  11. Fiziko-geograficheskoe raionirovanie Nechernozemnogo tsentra (Physical and Geographical Regionalization of the Non-Chernozem Center), Gvozdetskii, N.A. and Zhuchkova, V.K., Eds., Moscow: Mosk. Univ., 1963.

    Google Scholar 

  12. Gel’tser, Yu.G., Korganova, G.A., and Alekseev, D.A., Prakticheskoe rukovodstvo po identifikatsii pochvennykh testatsii (A Practical Guide to the Identification of Soil Testate Amoebae), Moscow: Mosk. Univ., 1985.

  13. Gilbert, D., Amblard, C., Bourdier, G., Francez, A.J., and Mitchell, E.A.D., Le régime alimentaire des thécamoebiens, L’Année Biologique, 2000, vol. 39, pp. 57–68.

  14. Gomaa, F., Mitchell, E.A., and Lara, E., Amphitremida (Poche, 1913) is a new major, ubiquitous labyrinthulomycete clade, PLoS One, 2013, vol. 8. e53046.

    Article  CAS  Google Scholar 

  15. Goring, S., Williams, J.W., Blois, J.L., Jackson, S.T., Paciorek, C.J., et al., Deposition times in the northeastern United States during the Holocene: establishing valid priors for Bayesian age models, Quat. Sci. Rev., 2012, vol. 48, pp. 54–60.

    Article  Google Scholar 

  16. Grimm, E.C., CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Comput. Geosci., 1987, vol. 13, pp. 13–35.

    Article  Google Scholar 

  17. Harnish, O., Studien zur Okologie und Tiergeographie der Moore, Zool. Jahrbücher. (Abt. Syst.), 1925, vol. 51, pp. 1–166.

  18. Ireland, A.W. and Booth, R.K., Hydroclimatic variability drives episodic expansion of a floating peat mat in a North American kettlehole basin, Ecology, 2011, vol. 92, no. 1, pp. 11–18.

    Article  Google Scholar 

  19. Juggins, S., rioja: Analysis of quaternary science data, R package version 0.9-15.1, 2017. http://cran.r-project.org/package=rioja.

  20. Mazei, Yu.A. and Embulaeva, E.A., Changes in communities of soil testate amoebae along the forest-steppe gradient in the Middle Volga region, Arid. Ekosist., 2009, vol. 15, pp. 13–23.

    Google Scholar 

  21. Mazei, Yu.A. and Tsyganov, A.N., Presnovodnye rakovinnye ameby (Freshwater Testate Amoebae), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2006.

  22. Mil’kov, F.N. and Gvozdetskii, N.A., Fizicheskaya geografiya SSSR. Obshchii obzor. Evropeiskaya chast’ SSSR. Kavkaz (Physical Geography of the USSR. General Review. European Part of the USSR. Caucasus), Moscow: Mysl’, 1976.

    Google Scholar 

  23. Mitchell, E.A.D., Charman, D.J., and Warner, B.G., Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future, Biodiversity Conserv., 2008, vol. 17, pp. 2115–2137.

    Article  Google Scholar 

  24. Moore, P.D., Webb, J.A., and Collinson, M.E., Pollen Analysis, Oxford: Blackwell, 1991.

    Google Scholar 

  25. Novenko, E.Y., Tsyganov, A.N., Mazei, N.G., Kupriyanov, D.A., Rudenko, O.V., et al., Palaeoecological evidence for climatic and human impacts on vegetation in the temperate deciduous forest zone of European Russia during the last 4200 years: a case study from the Kaluzhskiye Zaseki Nature Reserve, Quat. Int., 2019, vol. 516, pp. 58–69.

    Article  Google Scholar 

  26. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., et al., vegan: Community Ecology Package, R package version 2.5-4, 2019. https://CRAN.R-project.org/package=vegan.

  27. Patterson, R.T., Dalby, A., Kumar, A., Henderson, L.A., and Boudreau, R.E.A., Arcellaceans (thecamoebians) as indicators of land-use change: settlement history of the Swan Lake area, Ontario as a case study, J. Paleolimnol., 2002, vol. 28, p. 297e–316e.

    Article  Google Scholar 

  28. Payne, R.J., Testate amoeba response to acid deposition in a Scottish peatland, Aquat. Ecol., 2010, vol. 44, no. 2, pp. 373–385.

    Article  CAS  Google Scholar 

  29. Payne, R.J., Can testate amoeba-based palaeohydrology be extended to fens?, J. Quat. Sci., 2011, vol. 26, no. 1, pp. 15–27.

    Article  Google Scholar 

  30. Payne, R.J., Malysheva, E.A., Tsyganov, A.N., Pampura, T.V., Novenko, E.Y., et al., A multi-proxy record of Holocene environmental change, peatland development and carbon accumulation from Staroselsky Moch Peatland, Russia, Holocene, 2016, vol. 26, no. 2, pp. 314–326.

    Article  Google Scholar 

  31. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2018. URL https://www.R-project.org/.

  32. Reille, M., Pollen et spores d’Europe et d’Afrique du Nord, Marseille: Laboratoire de Botanique Historique et Palynologie, 1992.

    Google Scholar 

  33. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., et al., IntCal13 and Marine13 radiocarbon age calibration curves 0—50,000 years cal BP, Radiocarbon, 2013, vol. 55, no. 4, pp. 1869–1887.

    Article  CAS  Google Scholar 

  34. Ryding, H. and Juglum, J., The Biology of Peatlands, Oxford: Oxford Univ. Press, 2006.

    Book  Google Scholar 

  35. Schönborn, W.E., Studies on remains of Testacea in cores of the Great Woryty Lake (NE Poland), Limnologica, 1984, vol. 16, pp. 185–190.

    Google Scholar 

  36. Simpson, G.L. and Oksanen, J., analogue: Analogue matching and Modern Analogue Technique transfer function models, R package version 0.17-1, 2018. https://cran.r-project.org/package=analogue.

  37. Smirnova, O.V., Bobrovsky, M.V., Khanina, L.G., Braslavskaya, T.Yu., Starodubtseva, E.A., et al., Nemoral forests, in European Russian Forests. Their Current State and Features of Their History, Smirnova, O.V., Bobrovsky, M.V., and Khanina, L.G., Eds., Springer Netherlands, 2017, pp. 337–480.

    Google Scholar 

  38. Sonnenburg, E.P., Boyce, J.I., and Reinhardt, E.G., Multi-proxy lake sediment record of prehistoric (Paleoindian-Archaic) archaeological paleoenvironments at rice lake, ontario, canada, Quat. Sci. Rev., 2013, vol. 73, pp. 77–92.

    Article  Google Scholar 

  39. Sukachev, V.N., Bolota, ikh obrazovanie, razvitie i svoistva (Bogs, Their Formation, Development, and Properties), Leningrad: Lesn. Inst., 1926.

  40. Tolonen, K., Stratigraphic and rhizopod analyses on an old raised bog, Varrassuo, in Hollola, South Finland, Ann. Bot. Fenn., 1966, vol. 3, pp. 147–166.

    Google Scholar 

  41. Tyuremnov, S.N., Atlas rastitel’nykh ostatkov, vstrechaemykh v torfe (Atlas of Plant Residues Found in Peat), Moscow: Gosenergoizdat, 1959.

  42. Volkova, E.M., Swamping of karst and karst-suffosion depressions in the Tula oblast, in Napravleniya issledovanii v sovremennom bolotovedenii Rossii (Directions of Research in Modern Bog Science of Russia), Yurkovska, T.K., Ed., St. Petersburg, 2010, pp. 146–163.

  43. Volkova, E.M., Bogs of the Central Russian Upland: genesis, structural and functional features, and nature conservation value, Doctoral (Biol.) Dissertation, Tula: Tula State Univ., 2018.

  44. Warner, B.G. and Charman, D.J., Holocene changes on a peatland in Northwestern Ontario interpreted from testate amoebae (Protozoa) analysis, Boreas, 1994, no. 23, pp. 270–279.

Download references

Funding

This study was carried out with financial support of the Russian Science Foundation (project no. 19-14-00102 for statistical analysis and writing the paper), the Russian Foundation for Basic Research (project no. 17-04-00320 for microscopic analysis of testate amoebae), and within the framework of a State Assignment of the Ministry of Science and Higher Education to Penza State University (project no. 6.7197.2017/BP for analysis of the degree of peat humification).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Tsyganov, A. A. Komarov, N. G. Mazei, T. V. Borisova, E. Yu. Novenko or Yu. A. Mazei.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Pavlov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganov, A.N., Komarov, A.A., Mazei, N.G. et al. Dynamics of the Species Structure of Testate Amoeba Assemblages in a Waterbody-to-Mire Succession in the Holocene: A Case Study of Mochulya Bog, Kaluga Oblast, Russia. Biol Bull Russ Acad Sci 48, 938–949 (2021). https://doi.org/10.1134/S106235902107030X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235902107030X

Keywords:

Navigation