Skip to main content
Log in

Transition of Small Mammals from Live Elements of the Biocenoses to a Subfossil State

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

A wide range of problems arising during paleoreconstructions of small mammal communities and individual animal characteristics is reviewed. The patterns of transformation and information loss at the stages of the transition of small mammals from live elements of biocenoses to a subfossil condition through the stage of prey of birds-myophages are discussed. A literature analysis shows the capacities and limitations of modern methods for reconstructing the sizes, ages, and diets of small mammals based on their molars. The digestive secretions of owls that affect the morphological and size parameters of the remains of the small mammals they consume are discussed. Particular attention is paid to the processes in which animal bone remains become part of the deposits and are transformed to subfossils. Transformations of the characteristics of small mammalian communities and the intraspecific structure of species as selective prey to raptors are shown. The importance of considering the differentiated loss of bone remains of different sizes that occurs during their digestion and dispersion in deposits is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Agadzhanyan, A.K., Timing of the MimomysArvicola transition on the Russian Plain, Quat. Int., vol. 271, pp. 38–49.

  2. Andrews, P., Experiments in taphonomy, J. Archaeol. Sci., vol. 22, pp. 147–153.

  3. Andrews, P. and Fernández-Jalvo, Y., Seasonal variation in prey composition and digestion in small mammal predator assemblages, Int. J. Osteoarchaeol., 2018, vol. 28, no. 3, pp. 318–331.

    Article  Google Scholar 

  4. Andrews, P., Owls, Caves and Fossils: Predation, Preservation and Accumulation of Small Mammal Bones in Caves, with an Analysis of the Pleistocene Cave Faunas from Westbury-Sub-Mendip, Somerset, UK, London: Natural History Museum, 1990.

    Google Scholar 

  5. Angelone, C., Schultz, J.A., and Erbajeva, M.A., Determining the ontogenetic variation of lower cheek teeth occlusal surface patterns in lagomorphs using micro-ct technology, Palaeontol. Electron., 2014, vol. 17, no. 1, pp. 10–13.

    Google Scholar 

  6. Balčiauskas, L. and Balčiauskienė, L., Selection by size of the yellow-necked mice (Apodemus flavicollis) by breeding tawny owl (Strix aluco), North-West. J. Zool., 2014, vol. 10, no. 2, pp. 273–279.

    Google Scholar 

  7. Balčiauskas, L. and Balčiauskienė, L., Selective predation on common voles by tawny owls and long-eared owls in winter and spring, Turk. J. Zool., 2014a, vol. 38, no. 2, pp. 242–249.

    Article  Google Scholar 

  8. Balčiauskienė, L., Cranial growth of captive bred common voles (Microtus arvalis), Acta Zool. Litu., 2007, vol. 17, no. 3, pp. 220–227.

    Article  Google Scholar 

  9. Balčiauskienė, L., Cranial growth of captive bred bank voles (Clethrionomys glareolus), Acta Zool. Litu., 2007a, vol. 17, no. 1, pp. 33–40.

    Article  Google Scholar 

  10. Balčiauskienė, L. and Naruševičius, V., Coincidence of small mammal trapping data with their share in the tawny owl diet, Acta Zool. Litu., 2006, vol. 16, no. 2, pp. 93–101.

    Article  Google Scholar 

  11. Balčiauskienė, L., Skuja, S., and Zub, K., Avian predator pellet analysis in biodiversity and distribution investigations, Acta Biol. Univ. Daugav., 2005, vol. 5, no. 1, pp. 67–73.

    Google Scholar 

  12. Belmaker, M., Dental microwear of small mammals as a high resolution paleohabitat proxy: opportunities and challenges, J. Archaeol. Sci. Rep., 2018, vol. 18, pp. 824–838.

    Google Scholar 

  13. Bertrand, O.C., Schillaci, M.A., and Silcox, M.T., Cranial dimensions as estimators of body mass and locomotor habits in extant and fossil rodents, J. Vertebr. Paleontol., 2016, vol. 36, no. 1, pp. 1–10.

    Article  Google Scholar 

  14. Borodin, A.V., Opredelitel’ zubov polevok Urala i Zapadnoi Sibiri (pozdnii pleistotsen – sovremennost’) (Identification Guide to the Teeth of the Voles of the Urals and Western Siberia (Late Pleistocene–Present)), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2009.

  15. Borowski, Z., Keller, M., and Włodarska, A., Applicability of cranial features for the calculation of vole body mass, Ann. Zool. Fenn., 2008, vol. 45, no. 3, pp. 174–181.

  16. Bull, E.L., Henjum, M.G., and Rohweder, R.S., Nesting and foraging habitat of great gray owls, J. Raptor Res., 1988, vol. 22, no. 4, pp. 107–115.

    Google Scholar 

  17. Burgman, J.H., Leichliter, J., Avenant, N.L., and Ungar, P.S., Dental microwear of sympatric rodent species sampled across habitats in southern Africa: implications for environmental influence, Integr. Zool., 2016, no. 11, pp. 111–127.

  18. Burthe, S.J., Lambin, X., Telfer, S., Douglas, A., Beldomenico, P., et al., Individual growth rates in natural field vole, Microtus agrestis, populations exhibiting cyclic population dynamics, Oecologia, 2010, vol. 162, no. 3, pp. 653–661.

    Article  PubMed  Google Scholar 

  19. Calandra, I. and Merceron, G., Dental microwear texture analysis in mammalian ecology, Mamm. Rev., 2016, vol. 46, no. 3, pp. 215–228.

    Article  Google Scholar 

  20. Calandra, I., Zub, K., Szafraska, P.A., Zalewski, A., and Merceron, G., Silicon-based plant defenses, tooth wear and voles, J. Exp. Biol., 2016, vol. 219, pp. 501–507.

    Article  PubMed  Google Scholar 

  21. Chaline, J., Brunet-Lecomte, P., Montuire, S., Viriot, L., and Courant, F., Anatomy of the arvicoline radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary data, Ann. Zool. Fenn., 1999, vol. 36, pp. 239–267.

    Google Scholar 

  22. Charles, C., Jaeger, J.J., Michaux, J., and Viriot, L., Dental microwear in relation to changes in the direction of mastication during the evolution of Myodonta (Rodentia, Mammalia), Naturwissenschaften, 2007, vol. 94, pp. 71–75.

    Article  CAS  PubMed  Google Scholar 

  23. Cheprakov, M.I., Variation in the shape of the occlusal surface of molars in common lemmings (Lemmus), Nauchn. Vestn. Yamalo-Nenets. Avtonom. Okruga, 2010, no. 1 (64), pp. 75–82.

  24. Comay, O. and Dayan, T., From micromammals to paleoenvironments, Archaeol. Anthropol. Sci., 2018, vol. 10, no. 8, pp. 2159–2171.

    Article  Google Scholar 

  25. Comay, O. and Dayan, T., Taphonomic signatures of owls: new insights into micromammal assemblages, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2018a, vol. 492, pp. 81–91.

    Article  Google Scholar 

  26. Comay, O. and Dayan, T., What determines prey selection in owls? Roles of prey traits, prey class, environmental variables, and taxonomic specialization, Ecol. Evol., 2018b, vol. 8, no. 6, pp. 3382–3392.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Damuth, J.D., Damuth, J., MacFadden, B.J., and John, D., Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge, 1990.

  28. Denys, C., Taphonomy and experimentation, Archaeometry, 2002, vol. 44, pp. 469–484.

    Article  Google Scholar 

  29. Donazar, J.A. and Ceballos, O., Selective predation by eagle owls Bubo bubo on rabbits Oryctolagus cuniculus: age and sex preferences, Ornis Scand., 1989, vol. 20, no. 2, pp. 117–122.

    Article  Google Scholar 

  30. Egorov, O.V., On the method of determining the age of squirrels, Nauchn. Soobshch. Yakut. Fil. Akad. Nauk SSSR, 1958, no. 1, pp. 104–108.

  31. Evdokimov, N.G., Method for determining the age of the mole vole Ellobius talpinus (Rodentia, Cricetidae), Zool. Zh., 1997, vol. 76, no. 9, pp. 1094–1101.

    Google Scholar 

  32. Evropeiskaya ryzhaya polevka (The Bank Vole), Moscow: Nauka, 1981.

  33. Fernández-Jalvo, Y. and Andrews, P., Experimental effects of water abrasion on bone fragments, J. Taphonomy, 2003, vol. 1, pp. 145–161.

    Google Scholar 

  34. Fernández-Jalvo, Y. and Andrews, P., Atlas of Taphonomic Identifications: 1001+ Images of Fossil and Recent Mammal Bone Modification, Springer, 2016.

    Book  Google Scholar 

  35. Fernández-Jalvo, Y., Sánchez-Chillón, B., Andrews, P., Fernández-López, S., and Alcalá Martínez, L., Morphological taphonomic transformations of fossil bones in continental environments, and repercussions on their chemical composition, Archaeometry, 2002, vol. 44, no. 3, pp. 353–361.

    Article  Google Scholar 

  36. Fernández-Jalvo, Y., Andrews, P., Sevilla, P., and Requejo, V., Digestion versus abrasion features in rodent bones, Lethaia, 2014, vol. 47, pp. 323–336.

    Article  Google Scholar 

  37. Fernández-Jalvo, Y., Andrews, P., Denys, C., Sesé, C., Stoetzel, E., et al., Taphonomy for taxonomists: implications of predation in small mammal studies, Quat. Sci. Rev., 2016, vol. 139, pp. 138–157.

    Article  Google Scholar 

  38. Firmat, C., Rodrigues, H.G., Hutterer, R., Rando, J.C., Alcover, J.A., and Michaux, J., Diet of the extinct lava mouse Malpaisomys insularis from the Canary Islands: insights from dental microwear, Naturwissenschaften, 2011, vol. 98, pp. 33–37.

    Article  CAS  PubMed  Google Scholar 

  39. Fortelius, M., Problems with using fossil teeth to estimate body sizes of extinct mammals, in Body Size in Mammalian Paleobiology: Estimation and Biological Implications, Damuth, J. and Macfadden, B.J., Eds., Cambridge: Cambridge Univ. Press, 1990, pp. 207–228.

    Google Scholar 

  40. Fortelius, M. and Solounias, N., Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets, Am. Mus. Novit., 2000, vol. 3301, pp. 1–36.

    Article  Google Scholar 

  41. Fraser, D. and Theodor, J.M., The use of gross dental wear in dietary studies of extinct lagomorphs, J. Paleontol., vol. 84, pp. 720–729.

  42. Freudenthal, M. and Martín-Suárez, E., Estimating body mass of fossil rodents, Scr. Geol., 2013, vol. 145.

  43. Golenishchev, F.N. and Kenigsval’d, V., Growth rate of rootless teeth in Microtinae (Mammalia, Rodentia), in Funktsional’naya morfologiya i sistematika mlekopitayushchikh (Functional Morphology and Taxonomy of Mammals), St. Petersburg: Zool. Inst. Akad. Nauk SSSR, 1978, pp. 102–104.

  44. Gomes-Rodrigues, H., Merceron, G., and Viriot, L., Dental microwear patterns of extant and extinct Muridae (Rodentia, Mammalia): ecological implications, Naturwissenschaften, 2009, vol. 96, pp. 537–542.

    Article  CAS  Google Scholar 

  45. Gould, S.J., On the scaling of tooth size in mammals, Am. Zool., 1975, vol. 15, no. 2, pp. 353–362.

    Article  Google Scholar 

  46. Guérécheau, A., Ledevin, R., Henttonen, H., Deffontaine, V., Michaux, J.R., et al., Seasonal variation in molar outline of bank voles: an effect of wear?, Mamm. Biol., 2010, vol. 75, pp. 311–319.

    Article  Google Scholar 

  47. Hautier, L., Bover, P., Alcover, J.A., and Michaux, J., Mandible morphometrics, dental microwear pattern, and paleobiology of the extinct Balearic dormouse, Acta Palaeontol. Pol., 2009, vol. 54, pp. 181–194.

    Article  Google Scholar 

  48. Heisler, L.M., Somers, C.M., and Poulin, R.G., Owl pellets: a more effective alternative to conventional trapping for broad-scale studies of small mammal communities, Methods Ecol. Evol., 2016, vol. 7, no. 1, pp. 96–103.

    Article  Google Scholar 

  49. Hopkins, S.S., Reassessing the mass of exceptionally large rodents using toothrow length and area as proxies for body mass, J. Mammal., 2008, vol. 89, no. 1, pp. 232–243.

    Article  Google Scholar 

  50. Hopkins, S.S., Estimation of body size in fossil mammals, in Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities, Croft, D.A., Su, D.F., and Simpson, S.W., Eds., Springer, 2018, pp. 7–22.

  51. Hopley, P.J., Latham, A.G., and Marshall, J.D., Palaeoenvironments and palaeodiets of mid-Pliocene micromammals from Makapansgat Limeworks, South Africa: a stable isotope and dental microwear approach, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2006, vol. 233, nos. 3–4, pp. 235–251.

    Article  Google Scholar 

  52. Ivanter, E.V., On seasonal-age changes in body weight of the bank vole (Clethrionomys glareolus Schreb.), Uch. Zap. Petrozav. Gos. Univ., 2015, no. 4 (149), рр. 7–11.

  53. Karell, P., Lehtosalo, N., Pietiainen, H., and Brommer, J.E., Ural owl predation on field voles and bank voles by size, sex and reproductive state, Ann. Zool. Fenn., 2010, vol. 47, no. 2, pp. 90–99.

    Article  Google Scholar 

  54. Kaya, F. and Kaymakci, N., Systematics and dental microwear of the late Miocene Gliridae (Rodentia, Mammalia) from Hayranli, Anatolia: implications for paleoecology and paleobiodiversity, Palaeontol. Electron., 2013, vol. 16, no. 3, pp. 1–22.

  55. Khoroshev, A.V., Polimasshtabnaya organizatsiya geograficheskogo landshafta (Poly-Scale Organization of a Geographic Landscape), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2016.

  56. King, T., Andrews, P., and Boz, B., Effect of taphonomic processes on dental microwear, Am. J. Phys. Anthropol., 1999, vol. 108, no. 3, pp. 359–373.

    Article  CAS  PubMed  Google Scholar 

  57. Klevezal, G.A., Using recording structures for assessing life events and conditions at the time of death of mice of the genus Apodemus, Zool. Zh., 2001, vol. 80, no. 5, pp. 599–606.

    Google Scholar 

  58. Klevezal, G.A., Printsipy i metody opredeleniya vozrasta mlekopitayushchikh (Principles and Methods for Determining the Age of Mammals), Moscow: KMK, 2007.

  59. Klevezal, G.A. and Putsek, Z., What the study of the lower jaws of mice of the genus Apodemus found in pellets of birds of prey gives?, Zool. Zh., 2007, vol. 86, no. 12, pp. 1513–1516.

    Google Scholar 

  60. Klevezal, G.A., Smirina, E.M., Recording structures of terrestrial vertebrates. Brief history and current state of research, Zool. Zh., 2016, vol. 95, no. 8, pp. 872–896.

    Google Scholar 

  61. Korpimäki, E., Seasonal changes in the food of the Tengmalm’s owl Aegolius funereus in western Finland, Ann. Zool. Fenn., 1986, vol. 23, pp. 339–344.

    Google Scholar 

  62. Korpimäki, E., Diet composition, prey choice, and breeding success of long-eared owls: effects of multiannual fluctuations in food abundance, Can. J. Zool., 1992, vol. 70, no. 12, pp. 2373–2381.

    Article  Google Scholar 

  63. Korpimäki, E. and Sulkava, S., Diet and breeding performance of Ural owls Strix uralensis under fluctuating food conditions, Ornis Fenn., 1987, vol. 64, pp. 57–66.

    Google Scholar 

  64. Kourova, T.P., Age-related variability of the shape and size of the occlusal surface of M3 and M1 of the Middendorf vole, in Issledovaniya melkikh mlekopitayushchikh na Urale (Studies of Small Mammals in the Urals), Sverdlovsk: Ural. Nauchn. Tsentr Akad. Nauk SSSR, 1985, pp. 22–24.

  65. Kropacheva, Yu.E., The ratio of the linear dimensions of the body and teeth of the root vole (Microtus oeconomus Pall.) in ontogenesis, in Materialy konferentsii molodykh uchenykhEkologiya: teoriya i praktika” (Proceedings of the Conference of Young Scientists “Ecology: Theory and Practice”), Yekaterinburg, 2013, pp. 57–64.

  66. Kropacheva, Yu.E., Ontogenetic changes in the shape of the occlusal surface of molars of the narrow-headed vole (Arvicolinae, Rodentia), in Ekologiya. Genetika. Evolyutsiya: materialy konferentsii molodykh uchenykh (Ecology. Genetics. Evolution: Proceedings of the Conference of Young Scientists), Yekaterinburg: Izd. Goshchitskii, 2015, pp. 80–86.

  67. Kropacheva, Yu.E., On the issue of reconstruction of the size of narrow-headed voles from isolated teeth, in Dinamika sovremennykh ekosistem v golotsene: materialy IV Vserossiiskoi nauchnoi konferentsii (Dynamics of Modern Ecosystems in the Holocene: Proceedings of IV All-Russia Scientific Conference), Moscow, 2016, pp. 108–110.

  68. Kropacheva, Yu.E., Smirnov, N.G., and Markova, E.A., Individual age and odontologic characteristics of root vole, Dokl. Biol. Sci., 2012, vol. 446, pp. 302–305.

    Article  CAS  PubMed  Google Scholar 

  69. Kropacheva, Yu.E., Smirnov, N.G., and Pyastolova, O.A., Ontogenetic component in the variability of the dimensional characteristics of voles, in Teoreticheskie problemy ekologii i evolyutsii: Shestye Lyubishchevskie chteniya (Theoretical Problems of Ecology and Evolution: Sixth Lyubishchev Memorial Lectures), Rozenberg, G.S., Ed., Tolyatti: Cassandra, 2015, pp. 182–185.

  70. Kropacheva, Yu.E., Sibiryakov, P.A., Smirnov, N.G., and Zykov, S.V., Variants of tooth mesowear in microtus voles as indicators of food hardness and abrasiveness, Russ. J. Ecol., 2017, vol. 48, no. 1, pp. 73–80.

    Article  Google Scholar 

  71. Kropacheva, Yu.E., Cheprakov, M.I., Sineva, N.V., Evdokimov, N.G., Kuz’mina, E.A., and Smirnov, N.G., Dimensions of the body and molars in the mole vole (Ellobius talpinus, Rodentia, Cricetidae) depending on the age and environmental conditions, Biol. Bull. (Moscow), 2018, vol. 45, no. 7, pp. 766–771.

    Article  Google Scholar 

  72. Kropacheva, Yu.E., Zykov, S.V., Smirnov, N.G., and Salimov, R.M., Dental microwear and mesowear of the microtus voles molars before and after experimental feeding of owls, Dokl. Akad. Nauk, 2019, vol. 486, no. 5, pp. 79–82.

    Google Scholar 

  73. Ledevin, R., Quéré, J.P., and Renaud, S., Morphometrics as an insight into processes beyond tooth shape variation in a bank vole population, PLoS One, 2010, vol. 5, no. 11. e15470.

  74. Lee, W.B. and Houston, D.C., Tooth wear patterns in voles (Microtus agrestis and Clethrionomys glareolus) and efficiency of dentition in preparing food for digestion, J. Zool., 1993, vol. 231, no. 2, pp. 301–309.

  75. Levinson, M., Taphonomy of microvertebrates—from owl pellets to cave breccia, Ann. Transvaal Mus., 1982, vol. 33, pp. 115–121.

    Google Scholar 

  76. Lewis, P.J., Gutierrez, M., and Johnson, E., Ondatra zibethicus (Arvicolinae, Rodentia) dental microwear patterns as a potential tool for palaeoenvironmental reconstruction, J. Archaeol. Sci., 2000, vol. 27, pp. 789–798.

    Article  Google Scholar 

  77. Love, R.A., Webon, C., Glue, D.E., Harris, S., and Harris, S., Changes in the food of British barn owls (Tyto alba) between 1974 and 1997, Mamm. Rev., 2000, vol. 30, no. 2, pp. 107–129.

    Article  Google Scholar 

  78. Lozano-Fernández, I., Cuenca-Bescós, G., Blain, H.A., López-García, J.M., and Agustí, J., Mimomys savini size evolution in the Early Pleistocene of south-western Europe and possible biochronological implications, Quat. Sci. Rev., 2013, vol. 76, pp. 96–101.

    Article  Google Scholar 

  79. Lyman, R.L., Rodent–prey content in long-term samples of barn owl (Tyto alba) pellets from the northwestern united states reflects local agricultural change, Am. Midland Nat., 2012, vol. 167, no. 1, pp. 150–164.

    Article  Google Scholar 

  80. Lyman, R.L., Actualistic neotaphonomic research on bone modifying animal species: an analysis of the literature, Palaios, 2018, vol. 33, no. 12, pp. 542–554.

    Article  Google Scholar 

  81. Lyman, R.L., Daskalakis-Perez, A.E., Daskalakis-Perez, A.B., and Daskalakis-Perez, E.A., Sex ratio of rodents as barn owl (Tyto alba) prey, Am. Midland Nat., 2016, vol. 176, no. 1, pp. 152–158.

    Article  Google Scholar 

  82. Lyman, R.L., Vertebrate Taphonomy, Cambridge Univ. Press, 1994.

    Book  Google Scholar 

  83. Markova, E.A., Assessment of tooth complexity in arvicolines (Rodentia): a morphotype ranking approach, Biol. Bull. (Moscow), 2014, vol. 41, no. 7, pp. 589–600.

    Article  Google Scholar 

  84. Markova, E. and Smirnov, N., Phenotypic diversity arising from a limited number of founders: a study of dental variation in laboratory colonies of collared lemmings, Dicrostonyx (Rodentia: Arvicolinae), Biol. J. Linn. Soc., 2018, vol. 125, pp. 777–793.

    Article  Google Scholar 

  85. Markova, E.A., Smirnov, N.G., Kourova, T.P., and Kropacheva, Y.E., Ontogenetic variation in occlusal shape of evergrowing molars in voles: an intravital study in Microtus gregalis (Arvicolinae, Rodentia), Mamm. Biol., 2013, vol. 78, pp. 251–257.

    Article  Google Scholar 

  86. Markova, E.A., Bobretsov, A.V., Starikov, V.P., Cheprakov, M.I., and Borodin, A.V., Unification of criteria for distinguishing morphotypes of cheek teeth in lemmings (Lemmini, Arvicolinae, Rodentia), Biol. Bull. (Moscow), 2018, vol. 45, no. 9, pp. 1083–1095.

    Article  Google Scholar 

  87. Martin, R.A., Tracking mammal body size distributions in the fossil record: a preliminary test of the rule of limiting similarity, Acta Zool. Cracov., 1996, vol. 39, no. 1, pp. 321–328.

    Google Scholar 

  88. Mikkola, H., Owls of Europe, Berkhamsted: T. & AD Poyser, 1983.

    Google Scholar 

  89. Milana, G., Luiselli, L., and Amori, G., Forty years of dietary studies on barn owl (Tyto alba) reveal long term trends in diversity metrics of small mammal prey, Anim. Biol., 2018, vol. 68, no. 2, pp. 129–146.

    Article  Google Scholar 

  90. Millien, V. and Bovy, H., When teeth and bones disagree: body mass estimation of a giant extinct rodent, J. Mammal., 2010, vol. 91, pp. 11–18.

    Article  Google Scholar 

  91. Müller, J., Clauss, M., Codron, D., Schulz, E., Hummel, J., et al., Growth and wear of incisor and cheek teeth in domestic rabbits (Oryctolagus cuniculus) feed diets of different abrasiveness, J. Exp. Zool., 2014, vol. 321, pp. 283–298.

    Article  Google Scholar 

  92. Müller, J., Clauss, M., Codron, D., Schulz, E., Hummel, J., et al., Tooth length and incisal wear and growth in guinea pigs (Cavia porcellus) fed diets of different abrasiveness, J. Anim. Physiol. Anim. Nutr., 2015, vol. 99, no. 3, pp. 591–604.

    Article  Google Scholar 

  93. Nelson, S., Badgley, C., and Zakem, E., Microwear in modern squirrels in relation to diet, Palaeontol. Electron., 2005, vol. 8, no. 1, pp. 1–15.

    Google Scholar 

  94. Okulova, N.M., Experience of studying long-term dynamics of the abudance of mammals, Povolzh. Ekol. Zh., 2009, no. 2, pp. 125–136.

  95. Olenev, G.V., Functional determinism of ontogenetic changes in age markers of rodents and their practical use in population studies, Ekologiya, 1989, no. 2, pp. 19–31.

  96. Olenev, G.V., Alternative types of ontogeny in cyclomorphic rodents and their role in population dynamics: an ecological analysis, Russ. J. Ecol., 2002, vol. 33, no. 5, pp. 321–330.

    Article  Google Scholar 

  97. Olenev, G.V., Determining the age of cyclomorphic rodents: functional–ontogenetic determination, ecological aspects, Russ. J. Ecol., 2009, vol. 40, no. 2, pp. 93–104.

    Article  Google Scholar 

  98. Olenev, G.V. and Grigorkina, E.B., Functional patterns of life activities of rodent populations in the winter season, Russ. J. Ecol., 2014, vol. 45, no. 6, pp. 480–489.

    Article  Google Scholar 

  99. Patnaik, P., Enamel microstructure of some fossil and extant murid rodents of India, Paleontol. Res., 2002, vol. 6, pp. 239–258.

    Google Scholar 

  100. Penteriani, V., del Mar Delgado, M., and Campioni, L., Quantifying space use of breeders and floaters of a long-lived species using individual movement data, Sci. Nat., 2015, vol. 102, nos. 5–6.

  101. Petrová, I., Petriláková, M., Losík, J., Gouveia, A., Damugi, I.E., and Tkadlec, E., Density-related pattern of variation in body growth, body size and annual productivity in the common hamster, Mamm. Biol., 2018, vol. 91, pp. 34–40.

    Article  Google Scholar 

  102. Pukinskii, Yu.B., Eagle owl, in Ptitsy Rossii i sopredel’nykh regionov: Sovoobraznye, Kozodoeobraznye, Strizheobraznye, Raksheobraznye, Udodoobraznye, Dyatloobraznye (Birds of Russia and Adjacent Regions: Strigiformes, Caprimulgiformes, Apodiformes, Coraciiformes, Upupiformes, Piciformes), Moscow: Nauka, 1993, pp. 270–289.

  103. van Riper, C. and Van Wagtendonk, J., Home range characteristics of great gray owls in Yosemite National Park, California, J. Raptor Res., 2006, vol. 40, no. 2, pp. 130–141.

    Article  Google Scholar 

  104. Rodrigues, H.G., Merceron, G., and Viriot, L., Dental microwear patterns of extant and extinct Muridae (Rodentia, Mammalia): ecological implications, Naturwissenschaften, 2009, vol. 96, no. 4, pp. 537–542.

    Article  PubMed  Google Scholar 

  105. Rodrigues, H.G., Renaud, S., Charles, C., Le Poul, Y., Solé, F., et al., Roles of dental development and adaptation in rodent evolution, Nat. Commun., 2013, vol. 4, no. 2504, pp. 1–8.

    Article  Google Scholar 

  106. Romanowski, J. and Żmihorski, M., Seasonal and habitat variation in the diet of the tawny owl (Strix aluco) in Central Poland during unusually warm years, Biologia, 2009, vol. 64, no. 2, pp. 365–369.

    Article  Google Scholar 

  107. Rowe, R.J. and Terry, R.C., Small mammal responses to environmental change: integrating past and present dynamics, J. Mammal., 2014, vol. 95, no. 6, pp. 1157–1174.

    Article  Google Scholar 

  108. Sadykova, N.O. and Smirnov, N.G., Formirovanie lokal’nykh i elementarnykh faun v zoogennykh otlozheniyakh Pechoro-Ilychskogo zapovednika (Formation of Local and Elementary Faunas in Zoogenic Sediments of the Pechora-Ilych Nature Reserve), Tr. Pechoro-Ilych. Zapov., Syktyvkar: Komi Nauchn. Tsentr Ural. Otd. Ross. Akad. Nauk, 2005, no. 14, pp. 152–158.

  109. Schulz, E., Piotrowski, V., Clauss, M., Mau, M., Merceron, G., and Kaiser, T.M., Dietary abrasiveness is associated with variability of microwear and dental surface texture in rabbits, PLoS One, 2013, vol. 8. e56167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sharikov, A., Kovinka, T., and Bragin, M., Brief report a comparative laboratory study of the preservation of different rodent bones in pellets of Strigiformes, Ornis Fenn., 2018, vol. 95, pp. 82–88.

    Google Scholar 

  111. Shepel’, A.I., Khishchnye ptitsy i sovy Permskogo Prikam’ya (Birds of Prey and Owls of the Perm Kama Region), Irkutsk: Irkutsk. Univ., 1992.

  112. Schmidt-Nielsen, K., Scaling: Why Is Animal Size So Important?, Cambridge: Cambridge Univ. Press, 1984.

    Book  Google Scholar 

  113. Shokhrin, V.P., The role of muroid rodents in the diet of birds of prey, Vestn. Orenburg. Gos. Univ., 2008, no. 10, pp. 209–215.

  114. Shvarts, S.S., Evolyutsionnaya ekologiya zhivotnykh. Ekologicheskie mekhanizmy evolyutsionnogo protsessa (Evolutionary Ecology of Animals. Ecological Mechanisms of the Evolutionary Process), Sverdlovsk: Ural. Fil. Akad. Nauk SSSR, 1969.

  115. Sibiryakov, P.A., Indirect methods of reconstruction of the trophic spectrum of phytophagous rodents using the example of the common vole (Microtus arvalis obscurus, Pall., 1778), Ekol.: Teor. Prakt., 2013, pp. 96–101.

    Google Scholar 

  116. Smirnov, N.G., Melkie mlekopitayushchie Srednego Urala v pozdnem pleistotsene i golotsene (Small Mammals of the Middle Urals in the late Pleistocene and Holocene), Yekaterinburg: Nauka, Ural. Otd., 1993.

  117. Smirnov N. G., Kropacheva Yu. E. Patterns of lateral wear facets on molar teeth of voles (Arvicolinae) , Dokl. Akad. Nauk, 2015, vol. 460, no. 1, pp. 20–22.

  118. Smirnov, N.G. and Kropacheva, Yu.E., Main and concomitant prey of the eagle owl (Bubo bubo) in problems of historical ecology, Russ. J. Ecol., 2019, vol. 50, no. 5, pp. 491–495.

    Article  Google Scholar 

  119. Smirnov, N.G. and Sadykova, N.O., Sources of errors in faunistic reconstructions in quaternary paleozoology, in Chetvertichnaya paleozoologiya na Urale (Quaternary Paleozoology in the Urals), Yekaterinburg: Ural. Gos. Univ., 2003, pp. 98–115.

  120. Smirnov, N.G., Bol’shakov, V.N., and Borodin, A.V., Pleistotsenovye gryzuny severa Zapadnoi Sibiri (Pleistocene Rodents of the North of Western Siberia), Moscow: Nauka, 1986.

  121. Smirnov, N.G., Erokhin, N.G., Bykova, G.V., Lobanova, A.V., Korona, O.M., et al., Grotto Sukhorechensky—a monument of the history of nature and culture in the Krasnoufimskaya forest-steppe, in Istoriya sovremennoi fauny Yuzhnogo Urala (History of the Modern Fauna of the Southern Urals), Sverdlovsk, 1992, pp. 20–43.

  122. Smirnov, N.G., Votyakov, S.L., Sadykova, N.O., Kiseleva, D.V., and Shchapova, Yu.V., Fiziko-khimicheskie kharakteristiki iskopaemykh kostnykh ostatkov mlekopitayushchikh i problema otsenki ikh otnositel’nogo vozrasta (Physicochemical Characteristics of Fossil Bone Remains of Mammals and the Problem of Assessing Their Relative Age), Part 1: Termicheskii i mass-spektrometricheskii elementnyi analiz (Thermal and Mass Spectrometric Elemental Analysis), Yekaterinburg: Izd. Goshchitskii, 2009.

  123. Smirnov, N.G., Kropacheva, Yu.E., and Zykov, S.V., The prey of predatory owls (Strix nebulosa, Bubo bubo) as a source of selective accumulation of paleotheriological materials, Zool. Zh., 2019, vol. 98, no. 11, pp. 1233–1246.

    Google Scholar 

  124. Smoke, N.D. and Stahl, P.W., Post-burial fragmentation of microvertebrate skeletons, J. Archaeol. Sci., 2004, vol. 31, no. 8, pp. 1093–1100.

    Article  Google Scholar 

  125. Sunde, P., Forsom, H.M., Al-Sabi, M.N.S., and Overskaug, K., Selective predation of tawny owls (Strix aluco) on yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus), Ann. Zool. Fenn., 2012, vol. 49, no. 5, pp. 321–331.

    Article  Google Scholar 

  126. Terry, R.C., Owl pellet taphonomy: a preliminary study of the post-regurgitation taphonomic history of pellets in a temperate forest, Palaios, 2004, vol. 19, no. 5, pp. 497–506.

    Article  Google Scholar 

  127. Terry, R.C., Inferring predator identity from skeletal damage of small-mammal prey remains, Evol. Ecol. Res., 2007, vol. 9, no. 2, pp. 199–219.

    Google Scholar 

  128. Terry, R.C., Modeling the effects of predation, prey cycling, and time averaging on relative abundance in raptor-generated small mammal death assemblages, Palaios, 2008, vol. 23, no. 6, pp. 402–410.

    Article  Google Scholar 

  129. Terry, R.C., The dead do not lie: using skeletal remains for rapid assessment of historical small-mammal community baselines, Proc. R. Soc. B: Biol. Sci., 2009, vol. 277, no. 1685, pp. 1193–1201.

  130. Terry, R.C., On raptors and rodents: testing the ecological fidelity and spatiotemporal resolution of cave death assemblages, Paleobiology, 2010, vol. 36, no. 1, pp. 137–160.

    Article  Google Scholar 

  131. Terry, R.C., Laney, J.A., and Hay-Roe, S.H., Quantifying the digestive fingerprints of predators on the bones of their prey using scanning electron microscopy, Palaios, 2018, vol. 33, no. 11, pp. 487–497.

    Article  Google Scholar 

  132. Tores, M., Motro, Y., Motro, U., and Yom-Tov, Y., The barn owl—a selective opportunist predator, Israel J. Ecol. Evol., 2005, vol. 51, no. 4, pp. 349–360.

    Google Scholar 

  133. Townsend, K.E.B. and Croft, D.A., Enamel microwear in caviomorph rodents, J. Mammal., 2008, vol. 89, pp. 730–743.

    Article  Google Scholar 

  134. Trejo, A. and Guthmann, N., Owl selection on size and sex classes of rodents: activity and microhabitat use of prey, J. Mammal., 2003, vol. 84, no. 2, pp. 652–658.

    Article  Google Scholar 

  135. Trejo, A., Guthmann, N., and Lozada, M., Seasonal selectivity of Magellanic horned owl (Bubo magellanicus) on rodents, Eur. J. Wildlife Res., 2005, vol. 51, no. 3, pp. 185–190.

    Article  Google Scholar 

  136. Ulbricht, A., Maul, L.C., and Schulz, E., Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines, Mamm. Biol., 2015, vol. 80, no. 1, pp. 14–20.

    Article  Google Scholar 

  137. Ungar, P.S., Scott, R.S., Scott, J.R., and Teaford, M., Dental microwear analysis: historical perspectives and new approaches, Techn. Appl. Dental Anthropol., 2008, vol. 53, pp. 389–425.

    Google Scholar 

  138. Viriot, L., Chaline, J., and Schaaf, A., Le Boulenge E., Ontogenetic change of Ondatra zibethicus, in Morphological Change in Quaternary Mammals of North America, Cambridge Univ. Press, 2005, pp. 373–391.

    Google Scholar 

  139. Wellicome, T.I., Danielle Todd, L., Poulin, R.G., Holroyd, G.L., and Fisher, R.J., Comparing food limitation among three stages of nesting: supplementation experiments with the burrowing owl, Ecol. Evol., 2013, vol. 3, no. 8, pp. 2684–2695.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Winkler, D.E., Schulz-Kornas, E., Kaiser, T.M., De Cuyper, A., Clauss, M., and Tütken, T., Forage silica and water content control dental surface texture in guinea pigs and provide implications for dietary reconstruction, Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 4, pp. 1325–1330.

  141. Winkler, D.E., Andrianasolo, T.H., Andriamandimbiarisoa, L., Ganzhorn, J.U., Rakotondranary, S.J., et al., Tooth wear patterns in black rats (Rattus rattus) of Madagascar differ more in relation to human impact than to differences in natural habitats, Ecol. Evol., 2016, vol. 6, pp. 2205–2215.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yom-Tov, Y. and Yom-Tov, S., Climatic change and body size in two species of Japanese rodents, Biol. J. Linn. Soc., 2004, vol. 82, no. 2, pp. 263–267.

    Article  Google Scholar 

  143. Zarybnicka, M., Sedlacek, O., and Korpimaki, E., Do Tengmalm’s owls alter parental feeding effort under varying conditions of main prey availability?, J. Ornithol., 2009, vol. 150, no. 1, pp. 231–237.

    Article  Google Scholar 

  144. Zejda, J., Differential growth of three cohorts of the bank vole, Clethrionomys glareolus Schreb., Zool. Listy Folia Zool., 1971, vol. 20, no. 3, pp. 229–245.

    Google Scholar 

  145. Zykov, S.V., Kropacheva, Yu.E., Smirnov, N.G., and Dimitrova, Yu.V., Molar microwear of narrow-headed vole (Microtus gregalis Pall., 1779) depending on the feed abrasiveness, Dokl. Biol. Sci., 2018, vol. 47, no. 3, pp. 16–18.

    Article  Google Scholar 

Download references

Funding

This work was carried out within the framework of a State Assignment of the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, with partial support by the Russian Foundation for Basic Research (project nos. 19-04-01008 and 19-04-00507) and the Integrated Program of the Ural Branch, Russian Academy of Sciences (project no. 18-4-4-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. E. Kropacheva or N. G. Smirnov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropacheva, Y.E., Smirnov, N.G. Transition of Small Mammals from Live Elements of the Biocenoses to a Subfossil State. Biol Bull Russ Acad Sci 48, 1131–1145 (2021). https://doi.org/10.1134/S1062359021070177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021070177

Keywords:

Navigation