Skip to main content

Study of the Biological Dormancy of Aquatic Organisms in Open Space and Space Flight Conditions

Abstract

In outer space, ultraviolet and cosmic radiation, a wide range of high and low temperatures, altered gravity, electromagnetic fields, the vacuum, and their combinations determine the damaging effect on living organisms and act as a barrier to their interplanetary propagation. At the same time, biological dormancy, known in a wide range of bacteria, fungi, animals, and plants, makes it possible to preserve the viability of their dormant stages under extreme conditions for a long time. Along with lower organisms, resting stages (propagules) of multicellular animals and plants were tested on the ISS from 2005 to 2016 to assess their ability to survive after long-term exposure to open space and space flight conditions. About one-third of the more than 40 species studied were dormant stages of aquatic organisms (Cyprinodontiformes fish eggs, daphnia ephippii, resting eggs of phyllopods and ostracods, and diapausing larvae of dipterans). The experiments were carried out within the framework of four research programs: (1) inside the ISS station (AKVARIUM program) with a limited set of studied species; (2) outside the station in outer space, but without exposure to ultraviolet radiation (BIORISK programs); (3) in modified space conditions simulating the surface of Mars (EXPOSE-R program); and (4) in ground-based experiments with laboratory assessment of the impact of space flight factors (such as neutron radiation) on resting stages. Fundamentally new data were obtained on the tolerance of resting stages of terrestrial organisms to space environment factors, which has changed the idea of the possibility of bringing terrestrial life forms by spacecraft and astronauts to other planets.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Abramson, N. and Alekseev, V., Mechanisms and peculiarities of dormancy in vertebrates and invertebrates, Proc. Int. Conf. Use of Dormancy in Space Researches, St. Petersburg, 2009.

  2. Alekseev, V.R., Diapauza rakoobraznykh: ekologo-fiziologicheskie aspekty (Diapause of Crustaceans: Ecological and Physiological Aspects), Moscow: Nauka, 1990.

  3. Alekseev, V.R., Physiological and molecular biological mechanisms underlying diapause in aquatic invertebrates, Russ. J. Dev. Biol., 2010, vol 41, no. 2, pp. 61–70.

    CAS  Article  Google Scholar 

  4. Alekseev, V.R. and Lajus, D.L., Maternal and direct effects of natural-like changes of photoperiod and food condition manipulation on life history parameters in Daphnia, Aquat. Ecol., 2009, vol. 43, no. 2, pp. 415–421.

    Article  Google Scholar 

  5. Alekseev, V. and Lampert, W., Maternal control of resting-egg production in Daphnia, Nature, 2001, vol. 414, pp. 899–901.

    CAS  Article  Google Scholar 

  6. Alekseev, V.R. and Starobogatov, Y.I., Types of diapause in Crustacea: definitions, distributions, evolution, Hydrobiologia, 1996, vol. 320, pp. 15–26.

    Article  Google Scholar 

  7. Alekseev, V. and Sychev, V., Effects of space station conditions on resting egg survivorship and life cycle parameters in D. magna, Proc. 36th COSPAR Sci. Assembly, Beijing, 2006. http://www.meetings.copernicus.org/www.cosis.net/abstracts/COSPAR2006/00189/COSPAR2006-A-00189.pdf.

  8. Alekseev, V., Sychev, V., Layus D., Levinsky M., Novikova, N., and Zakhodnova T., Perspectives of biotechnologies based on dormancy phenomenon for space researches, Proc. 36th COSPAR Sci. Assembly, Beijing, 2006.

  9. Alekseev, V.R., Sychev, V.N., and Novikova, N.D., Studying the phenomenon of dormancy: why it is important for space exploration, in Diapause in Aquatic Invertebrates: Theory and Human Use, New York: Springer-Verlag, 2007, pp. 207–214.

    Book  Google Scholar 

  10. Alekseev, V.R., Levinskikh, M.A., Novikova, N.D., Sychev, V.N., and Okuda, T., Effects of some space flight factors on termination and survivorship in crustacean resting stages, Proc. Int. Conf. Use of Dormancy in Space Researches, St. Petersburg, 2009.

  11. Alekseev V.R., Levinskikh M.A., Sychev V.N. Influence of space flight on the resting stages of lower crustaceans. Experiments “Akvarium”, in Space biology and medicine. Biomedical research on the Russian segment of the ISS. Moscow: Scientific book, 2011, vol. 2, pp. 340–351.

  12. Alekseev, V., Novikova, N., Levinskikh, M., Sychev, V., Yusoff, F., and Azuraidi, O., Expose-R experiment on effects of open space condition on survivorship in dormant stages of aquatic invertebrates, Proc. 39th COSPAR Sci. Assembly, Mysore, 2012, vol. 39, p. 36.

  13. Alekseev, V.R., Levinskikh, M.A., Novikova, N.D., and Sychev, V.N., Studying dormancy in space conditions, in Dormancy in Aquatic Organisms: Theory, Human Use and Modeling, Berlin: Springer-Verlag, 2019, pp. 97–119.

    Book  Google Scholar 

  14. Baranov, V.M., Novikova, N.D., Polikarpov, N.A., Sychev, V.N., Levinskikh, M.A., Alekseev, V.R., Okuda, T., Sugimoto, M., Gusev, O.A., and Grigor’ev, A.I., The Biorisk experiment: 13-month exposure of resting forms of organism on the outer side of the Russian segment of the International Space Station: preliminary results, Dokl. Biol. Sci., 2009, vol. 426, pp. 267–270.

    CAS  Article  Google Scholar 

  15. Berces, A., Egyeki, M., Fekete, A., Kovacs, G., and Ronto, G., Biological ultraviolet dosimetry in low-Earth’s orbit, Astrobiol. Outreach, 2013, vol. 1, p. 104.

    Google Scholar 

  16. Berger, T., Hajek, M., Bilski, P., Körner, C., Vanhavere, F., and Reitz, G., Cosmic radiation exposure of biological test systems during the EXPOSE-E mission, Astrobiology, 2012, vol. 12, no. 5, pp. 387–392.

    Article  Google Scholar 

  17. Berger, T., Hajek, M., Bilski, P., and Reitz, G., Cosmic radiation exposure of biological test systems during the EXPOSE-R mission, Int. J. Astrobiol., 2015, vol. 14, no. 1, pp. 27–32.

    Article  Google Scholar 

  18. Dachev, T., Horneck, G., Häder, D.P., Schuster, M., Richter, P., Lebert, M., and Demets, R., Time profile of cosmic radiation exposure during the EXPOSE-E mission: the R3DE instrument, Astrobiology, 2012, vol. 12, no. 5, pp. 403–411.

    CAS  Article  Google Scholar 

  19. Dachev, T., Horneck, G., Häder, D.P., Schuster, M., and Lebert, M., EXPOSE-R cosmic radiation time profile, Int. J. Astrobiol., 2015, vol. 14, no. 1, pp. 17–25.

    Article  Google Scholar 

  20. Danilevskii, A.S., Fotoperiodizm i sezonnoe razvitie nasekomykh (Photoperiodism and Seasonal Development of Insects), Leningrad: Nauka, 1961.

  21. Ebert, D., The trade-off between offspring size and number in Daphnia magna—the influence of genetic, environmental and maternal effects, Arch. Hydrobiol. Suppl., 1993, vol. 90, pp. 453–473.

    Google Scholar 

  22. Glazier, D.S., Effects of food, genotype, and maternal size and age on offspring investment in Daphnia magna, Ecology, 1992, vol. 73, no. 3, pp. 910–926.

    Article  Google Scholar 

  23. Gusev, O., Kikawada, T., and Okuda, T., Biochemical and genetic mechanisms of survival of “sleeping chironomids” Polypedilum vanderplanki in extreme environments, including outer space, Proc. Int. Conf. Use of Dormancy in Space Researches, St. Petersburg, 2009.Katajisto, T., Copepod eggs survive a decade in the sediments of the Baltic Sea, Hydrobiologia, 1996, vol. 320, nos. 1–3, pp. 153–159.

    Article  Google Scholar 

  24. Lampert, W., Schmitt, R.D., and Muck, P., Vertical migration of freshwater zooplankton: test of some hypotheses predicting a metabolic advantage, Bull. Mar. Sci., 1988, vol. 43, no. 3, pp. 620–640

    Google Scholar 

  25. Lynch, M., The evolution of Cladoceran life histories, Quart. Rev. Biol., 1980, vol. 55, no. 1, pp. 23–42.

    Article  Google Scholar 

  26. Maternal Effects as Adaptations, Mousseau, T.A. and Fox, C.W., Eds., New York: Oxford Univ. Press, 1998.

    Google Scholar 

  27. Matthiä, D., Hassler, D.M., de Wet, W., Ehresmann, B., Firan, A., Flores-McLaughlin, J., Guo, J., Heilbronn, L.H., Lee, K., Ratliff, H., Rios, R.R., Slaba, T.C., Smith, M., Stoffle, N.N., Townsend, L.W., et al., The radiation environment on the surface of Mars—Summary of model calculations and comparison to RAD data, Life Sci. Space Res., 2017, vol. 14, pp. 18–28.

    Article  Google Scholar 

  28. Mo, W., Liu, Y., and He, R., Hypomagnetic field, an ignorable environmental factor in space, Sci. China Life Sci., 2014, vol. 57, no. 7, pp. 726–728.

    Article  Google Scholar 

  29. Muller, H., Wachstum und Phosphatbedarf von Nitzschia actinastroides (Lemm.) v. Goor in statischer und homokontinuierlicher Kultur unter Phosphatlimitierung, Arch. Hydrobiol. Suppl., 1972, vol. 33, pp. 206–236.

  30. NASA Mars Radiation Environment Briefing to NAC HEO/SMD Joint Committee Meeting “Mars Radiation Environment –what have we learned?” 2017. https://www.nasa.gov/sites/default/files/atoms/files/mars_radiation_environment_nac_july_2017_final.pdf.

  31. Novikova, N., Orlov, O., Deshevaya, E., Sychev, V., Khamidullina, N., Aleksashkin, S., and Martynov, M., Phobos-Grunt Mission: planetary protection issues and how to solve them (the approaches based on the exobiological experiments results), Proc. 38th COSPAR Sci. Assembly, Bremen, 2010, p. 8.

  32. Novikova, N., Gusev, O., Polikarpov, N., Deshevaya, E., Levinskikh, M., Alekseev, V., Okuda, T., Sugimoto, M., Sychev, V., and Grigoriev, A., Survival of dormant organisms after long-term exposure to the space environment, Acta Astronaut., 2011, vol. 68, nos. 9–10, pp. 1574–1580.

    Article  Google Scholar 

  33. Novikova, N., Gusev, O., Sugimoto, M., Deshevaya, E., Levinskikh, M., Sychev, V., Okuda, T., Orlov, O., Alekseev, V., Poddubko, S., and Polikarpov, N., Results of studies on long-term exposition of dormant forms of various organisms in outer space environment, Proc. 40th COSPAR Sci. Assembly, Moscow, 2014a.

  34. Novikova, N., Orlov, O., Polikarpov, N., Deshevaya, E., and Sychev, V., The planetary quarantine problem and its substantiation on the basis of the results of exobiological experiments, Ecol. Saf., 2014b, vol. 8, pp. 111–119.

    Google Scholar 

  35. Novikova, N., Deshevaya, E., Levinskikh, M., Polikarpov, N., Poddubko, S., Gusev, O., and Sychev, V., Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the “Expose-R” experiment, Int. J. Astrobiol., 2015, vol. 14, no. 1, pp. 137–142.

    Article  Google Scholar 

  36. Novikova, N., Poddubko, S., Deshevaya, E., and Sychev, V., Survival of bacterial and fungal spores in the Expose-R2 experiment, Int. J. Bioassays, 2018, vol. 7, pp. 5616–5622

    CAS  Google Scholar 

  37. Okuda, T., Cryptobiosis, in Encyclopedia of Entomology, New York: Springer-Verlag, 2008, p. 1128.

    Google Scholar 

  38. Orlov, O.I., Deshevaya, E.A., Levinskikh, M.A., Novikova, N.D., Poddubko, S.V., Polikarpov, N.A., Sychev, V.N., Alekseev, V.R., Vorob’eva, E.A., Gal’chenko, V.F., Zakharov, A.V., and Muravenko, O.V., Biophobos/Anabiosis experiment, in Fobos-Grunt. Proekt kosmicheskoi ekspeditsii (Phobos-Grunt: A Project of Space Expedition), Moscow: Inst. Kosm. Issled., Ross. Akad. Nauk, 2011, vol. 2, pp. 483–493.

  39. Orlov, O.I., Novikova, N.D., Polikarpov, N.A., Levinskikh, M.A., Deshevaya, E.A., Sugimoto, M., Alekseev, V.R., Okuda, T., Gusev, O.A., and Sychev, V.N., Planetary protection challenges in space exploration missions and ways of their resolution with account of Russian exobiology experiments, REACH, 2017, vol. 6, pp. 25–33.

    Article  Google Scholar 

  40. Rabbow, E., Horneck, G., Rettberg, P., Schott, J.U., Panitz, C., L’Afflitto, A., von Heise-Rotenburg, R., Willnecker, R., Baglioni, P., Hatton, J., Dettmann, J., Demets, R., and Reitz, G., EXPOSE, an astrobiological exposure facility on the International Space Station—from proposal to flight, Origins Life Evol. Biospheres, 2009, vol. 39, pp. 581–598.

    Article  Google Scholar 

  41. Rabbow, E., Rettberg, P., Barczyk, S., Bohmeier, M., Parpart, A., Panitz, C., Horneck, G., Burfeindt, J., Molter, F., Jaramillo, E., Pereira, C., Weiß, P., Willnecker, R., Demets, R., Dettmann, J., and Reitz, G., The astrobiological mission EXPOSE-R on board of the International Space Station, Int. J. Astrobiol., 2015, vol. 14, no. 1, pp. 3–16.

    Article  Google Scholar 

  42. Rabbow, E., Rettberg, P., Parpart, A., Panitz, C., Schulte, W., Molter, F., Jaramillo, E., Demets, R., Weiß, P., and Willnecker, R., EXPOSE-R2: The astrobiological ESA Mission on board of the International Space Station, Front. Microbiol., 2017, vol. 8, no. 1533, pp. 1–14.

    Article  Google Scholar 

  43. Ramírez-Reveco, A., Hernández, J.L., and Aros, P., Long-term storing of frozen semen at 196ºC does not affect the post-thaw sperm quality of bull semen, in Cryopreservation in Eukaryotes, London: InTechOpen, 2016, p. 91.

  44. Research in space 2017 and beyond. https://www.nasa.gov/sites/default/files/atoms/files/np-2017-04-014-a-jsc_iss_utilization_brochure_2017_web_6-5-17.pdf.

  45. Rettberg, P., Rabbow, E., Panitz, C., and Horneck, G., Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues, Adv. Space Res., 2004, vol. 33, no. 8, pp. 1294–1301.

    CAS  Article  Google Scholar 

  46. Shepelev, E.Ya., Biological systems of life support, in Osnovy kosmicheskoi biologii i meditsiny (Fundamentals of Space Biology and Medicine), Moscow: Nauka, 1975, vol. 3, pp. 277–307.

  47. Sychev, V., The main results and perspectives of dormancy uses in space researches, Proc. Int. Conf. Use of Dormancy in Space Researches, St. Petersburg, 2009.

  48. Sychev, V.N., Levinskikh, M.A., Podol’skii, I.G., Novikova, N.D., Gostimskii, S.A., Alekseev, V.A., and Bingkhem, G., The general results of experiments on the study of higher plants and dormant forms of organisms on board the Russian segment of the International Space Station, Kosmonavtika Raketostr., 2007, vol. 4, no. 49, pp. 54–64.

    Google Scholar 

  49. Thirsk, R., Kuipers, A., Mukai, C., and Williams, D., The space-flight environment: the International Space Station and beyond, Can. Med. Assoc. J., 2009, vol. 180, no. 12, pp. 1216–1220.

    Article  Google Scholar 

  50. Trotter, B., Otte, K.A., Schoppmann, K., Hemmersbach, R., Fröhlich, T., Arnold, G.J., and Laforsch, C., The influence of simulated microgravity on the proteome of Daphnia magna, Microgravity, 2015, vol. 1, no. 15016, pp. 1–10.

    Google Scholar 

  51. Vera de, J.-P., Alawi, M., Backhaus, T., Baqué, M., Billi, D., Böttger, U., Berger, T., Bohmeier, M., Cockell, C., Demets, R., Noetzel, R.T., Edwards, H., Elsaesser, A., Fagliarone, C., Fiedler, A., et al., Limits of life and the habitability of Mars: the ESA space experiment BIOMEX on the ISS, Astrobiology, 2019, vol. 19, no. 2, pp. 145–157.

    Article  Google Scholar 

  52. Wakayama, S., Kamada, Y., Yamanaka, K., Kohda, T., Suzuki, H., Shimazu, T., Tada, M.N., Osada, I., Nagamatsu, A., Kamimura, S., and Nagatomo, H., Healthy offspring from freeze-dried mouse spermatozoa held on the International Space Station for 9 months, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 23, pp. 5988–5993.

    CAS  Article  Google Scholar 

  53. Zelenyi, L.M. and Zakharov, A.V., Project “Phobos-grunt”: instruments for scientific research, Sol. Syst. Res., 2012, vol. 46, no. 7, pp. 489–492.

    Article  Google Scholar 

  54. Zhou, D., Semones, E., Gaza, R., Johnson, S., Zapp, N., and Weyland, M., Radiation measured for ISS-Expedition 12 with different dosimeters, Nucl. Instrum. Methods Phys. Res., Sect. A, 2007, vol. 580, no. 3, pp. 1283–1289.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to all members of the Institute of Biomedical Problems, Russian Academy of Sciences, as well as to members of ISS crews, who participated in the preparation and performance of experiments with resting stages in space flight. I express particular gratitude to members of the Institute of Biomedical Problems N.D. Novikova and M.A. Levinskikh for the consultations. I am grateful to member of the Institute of Inland Water Biology, Russian Academy of Sciences, V.V. Krylov for technical support during the experiments with the modified magnetic field. The author is also grateful to the participants of the Russian Foundation for Basic Research/Japan and Russian Foundation for Basic Research/Taiwan international projects for assistance in the research. I thank Professor W. Lampert (Ploen, Germany) for his invaluable assistance in providing the instrumental facilities of the Max Planck Institute of Limnology, which were used in the experiment inside the ISS and during the discussion of its results. The author is sincerely grateful to the anonymous reader for the valuable comments, which, undoubtedly, helped to improve the perception of this review. O.A. Chaban helped considerably in preparing and drafting the manuscript of the article.

Funding

This review was initiated and supported by a grant from the Russian Foundation for Basic Research, “Expansion” (project no. 19-14-50004). This study was supported in part by the Federal Program for Studying the Biodiversity of the Animal World (project no. AAAA-A19-119020690091-0), Russian Academy of Sciences, and RFBR grant 20-04-00035. The Federal Collection of the Zoological Institute, Russian Academy of Sciences, was involved during its preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Alekseev.

Ethics declarations

Conflict of interest. The author declares that he has no conflict of interest.

Statement on the welfare of animals. All the applicable international, national, and/or institutional principles for using animals in experiments and conditions for their maintenance were satisfied. This study did not involve humans as subjects.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alekseev, V.R. Study of the Biological Dormancy of Aquatic Organisms in Open Space and Space Flight Conditions. Biol Bull Russ Acad Sci 48, 641–661 (2021). https://doi.org/10.1134/S1062359021060030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021060030

Keywords:

  • diapause
  • space flight factors
  • ISS
  • interplanetary quarantine
  • astrobiology
  • hydrobiology
  • microgravity
  • cosmic radiation
  • ultraviolet light
  • magnetic field
  • temperature effect
  • search for extraterrestrial life forms