Skip to main content
Log in

Comparison of Blastocyst Development between Cat-Cow and Cat-Pig Interspecies Somatic Cell Nuclear Transfer Embryos Treated with Trichostatin A

  • DEVELOPMENTAL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

We previously demonstrated that the histone deacetylase inhibitor, trichostatin A (TSA), improves the development of cat-cow interspecies somatic cell nuclear transfer (iSCNT) embryos. In this study, we investigated if 50 nM TSA treatment for 24 h would improve the rate of embryo development to the blastocyst stage in cat-pig iSCNT embryos, compared with cat-cow iSCNT embryos under same treatment. Despite the SCNT technique (Piezo technique) differing from our previous study (conventional technique), we confirmed that TSA supplementation at 50 nM improved the development of cat-cow iSCNT blastocysts. Porcine oocytes showed the capability to support cat iSCNT embryo development up to the blastocyst stage without TSA treatment although bovine oocytes did not. The blastocyst developmental rate of TSA treated cat-pig iSCNT embryos was significantly lower than that of the non-treated groups (0.68 and 7.95%, respectively, p < 0.05). We used in vitro-fertilized (IVF) porcine embryos to compare the effects of acetylation levels on H3K9 between cat-pig iSCNT embryos and naturally fertilized embryos. We found no differences in acetylation levels of H3K9 between the TSA treated and non-treated iSCNT groups, and the levels were lower than that of IVF embryos. In conclusion, the effects of TSA treatment on iSCNT embryo production were found to be species-specific and dependent on individual characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Agalioti, T., Lomvardas, S., Parekh, B., Yie, J., Maniatis, T., and Thanos, D., Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter, Cell, 2000, vol. 103, pp. 667–678.

    Article  CAS  Google Scholar 

  2. Akagi, S., Matsukawa, K., Mizutani, E., Fukunari, K., Kaneda, M., Watanabe, S., and Takahashi, S., Treatment with a histone deacetylase inhibitor after nuclear transfer improves the preimplantation development of cloned bovine embryos, J. Reprod. Dev., 2011, vol. 57, pp. 120–126.

    Article  CAS  Google Scholar 

  3. marnath, D., Choi, I., Moawad, A.R., Wakayama, T., and Campbell, K.H., Nuclear–cytoplasmic incompatibility and inefficient development of pig–mouse cytoplasmic hybrid embryos, Reproduction, 2011, vol. 142, p. 295

    Article  CAS  Google Scholar 

  4. Bhuiyan, M.M.U., Suzuki, Y., Watanabe, H., Lee, E., Hirayama, H., Matsuoka, K., Fujise, Y., Ishikawa, H., Ohsumi, S., and Fukui, Y., Production of sei whale (Balaenoptera borealis) cloned embryos by inter- and intra-species somatic cell nuclear transfer, J. Reprod. Dev., 2010, vol. 56, pp. 131–139.

    Article  CAS  Google Scholar 

  5. Chang, K.H., Lim, J.M., Kang, S.K., Lee, B.C., Moon, S.Y., and Hwang, W.S., An optimized protocol of a human-to-cattle interspecies somatic cell nuclear transfer, Fertil. Steril., 2004, vol. 82, pp. 960–962.

    Article  Google Scholar 

  6. Chen, S.U., Chao, K.H., Chang, C.Y., Hsieh, F.J., Ho, H.N., and Yang, Y.S., Technical aspects of the piezo, laser-assisted, and conventional methods for nuclear transfer of mouse oocytes and their efficiency and efficacy: piezo minimizes damage of the ooplasmic membrane at injection, J. Exp. Zool. A. Comp. Exp. Biol., 2004, vol. 301, pp. 344–351.

    Article  Google Scholar 

  7. Galeati, G., Spinaci, M., Vallorani, C., Bucci, D., Porcu, E., and Tamanini, C., Pig oocyte vitrification by cryotop method: effects on viability, spindle and chromosome configuration and in vitro fertilization, Anim. Reprod. Sci., 2011, vol. 127, pp. 43–49.

    Article  CAS  Google Scholar 

  8. Gupta, M.K., Das, Z.C., Heo, Y.T., Joo, J.Y., Chung, H.J., Song, H., Kim, J.H., Kim, N.H., Lee, H.T., and Ko, D.H., Transgenic chicken, mice, cattle, and pig embryos by somatic cell nuclear transfer into pig oocytes, Cell. Reprogram., 2013, vol. 15, pp. 322–328.

    Article  CAS  Google Scholar 

  9. Hoffert, K.A., Anderson, G.B., Wildt, D.E., and Roth, T.L., Transition from maternal to embryonic control of development in IVM/IVF domestic cat embryos, Mol. Reprod. Dev.: Incorporating Gamete Research, 1997, vol. 48, pp. 208–215.

    CAS  Google Scholar 

  10. Holt, W.V., Pickard, A.R., and Prather, R.S., Wildlife conservation and reproductive cloning, Reproduction, 2004, vol. 127, pp. 317–324.

    Article  CAS  Google Scholar 

  11. Hu, S., Ni, W., Chen, C., Sai, W., Hazi, W., He, Z., Meng, R., and Guo, J., Comparison between the effects of valproic acid and trichostatin A on in vitro development of sheep somatic cell nuclear transfer embryos, J. Anim. Vet. Adv., 2015, vol. 11, pp. 1868–1872.

    Google Scholar 

  12. Kaedei, Y., Fujiwara, A., Itoh, A., Tanihara, F., Namura, Z., Luu, V.V., and Otoi, T. In vitro development of cat interspecies nuclear transfer using pig’s and cow’s cytoplasm, Bull. Vet. Inst. Pulawy., 2010, vol. 54, pp. 405–408.

    Google Scholar 

  13. Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N.V., Wakayama, S., Bui, H.T., and Wakayama, T., Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer, Biochem. Biophys. Res. Commun., 2006, vol. 340, pp. 183–189.

    Article  CAS  Google Scholar 

  14. Kwun, J., Chang, K., Lim, J., Lee, E., Lee, B., Kang, S., and Hwang, W., Effects of exogenous hexoses on bovine in vitro fertilized and cloned embryo development: improved blastocyst formation after glucose replacement with fructose in a serum-free culture medium, Mol. Reprod. Dev., 2003, vol. 65, pp. 167–174.

    Article  CAS  Google Scholar 

  15. Lagutina, I., Fulka, H., Brevini, T., Antonini, S., Brunetti, D., Colleoni, S., Gandolfi, F., Lazzari, G., Fulka, J.J., and Galli, C., Development, embryonic genome activity and mitochondrial characteristics of bovine–pig inter-family nuclear transfer embryos, Reproduction, 2010, vol. 140, pp. 273–285.

    Article  CAS  Google Scholar 

  16. Li, J., Svarcova, O., Villemoes, K., Kragh, P.M., Schmidt, M., Bøgh, I.B., Zhang, Y., Du, Y., Lin, L., Purup, S., Xue, Q., Bolund, L., Yang, H., Maddox-Hyttel, P., and Vajta, G., High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos, Theriogenology, 2008, vol. 70, pp. 800–808.

    Article  CAS  Google Scholar 

  17. Loi, P., Modlinski, J.A., and Ptak, G., Interspecies somatic cell nuclear transfer: a salvage tool seeking first aid, Theriogenology, 2011, vol. 76, pp. 217–228.

    Article  CAS  Google Scholar 

  18. Mastromonaco, G.F., Favetta, L.A., Smith, L.C., Filion, F., and King, W.A., The influence of nuclear content on developmental competence of gaur × cattle hybrid in vitro fertilized and somatic cell nuclear transfer embryos, Biol. Reprod., 2007, vol. 76, pp. 514–523.

    Article  CAS  Google Scholar 

  19. Namula, Z., Sato, Y., Kodama, R., Morinaga, K., Luu, V.V., Taniguchi, M., Nakai, M., Tanihara, F., Kikuchi, K., Nagai, T., and Otoi, T., Motility and fertility of boar semen after liquid preservation at 5°C for more than 2 weeks, Anim. Sci. J., 2013, vol. 84, pp. 600–606.

    Article  Google Scholar 

  20. Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H., and Perry, A.C., Pig cloning by microinjection of fetal fibroblast nuclei, Science, 2000, vol. 289, pp. 1188–1190.

    Article  CAS  Google Scholar 

  21. Rojas, C., Palomo, M.J., Albarracín, J.L., and Mogas, T., Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments, Cryobiology, 2004, vol. 49, pp. 211–220.

    Article  CAS  Google Scholar 

  22. Rybouchkin, A., Kato, Y., and Tsunoda, Y., Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer, Biol. Reprod., vol. 74, pp. 1083–1089.

  23. Sawai, K., Fujii, T., Hirayama, H., Hashizume, T., and Minamihashi, A., Epigenetic status and full-term development of bovine cloned embryos treated with trichostatin A, J. Reprod. Dev., 2012, vol. 58, pp. 302–309.

    Article  CAS  Google Scholar 

  24. Shi, L.H., Miao, Y.L., Ouyang, Y.C., Huang, J.C., Lei, Z.L., Yang, J.W., Han, Z.M., Song, X.F., Sun, Q.Y., and Chen, D.Y., Trichostatin A (TSA) improves the development of rabbit–rabbit intraspecies cloned embryos, but not rabbit–human interspecies cloned embryos, Dev. Dynam., 2008, vol. 237, pp. 640–648.

    Article  Google Scholar 

  25. Srirattana, K., Imsoonthornruksa, S., Laowtammathron, C., Sangmalee, A., Tunwattana, W., Thongprapai, T., Chaimongkol, C., Ketudat-Cairns, M., and Parnpai, R., Full-term development of gaur–bovine interspecies somatic cell nuclear transfer embryos: effect of trichostatin A treatment, Cell. Reprogram., 2012, vol. 14, pp. 248–257.

    Article  CAS  Google Scholar 

  26. Taniguchi, M., Ikeda, A., Arikawa, E., Wongsrikeao, P., Agung, B., Naoi, H., Nagai, T., and Otoi, T., Effect of cryoprotectant composition on in vitro viability of in vitro fertilized and cloned bovine embryos following vitrification and in-straw dilution, J. Reprod. Dev., 2007, pp. 963–969.

  27. Thongphakdee, A., Kobayashi, S., Imai, K., Inaba, Y., Tasai, M., Tagami, T., Nirasawa, K., Nagai, T., Saito, N., Techakumphu, M., and Takeda, K., Interspecies nuclear transfer embryos reconstructed from cat somatic cells and bovine ooplasm, J. Reprod. Dev., 2008, vol. 54, pp. 142–147.

    Article  CAS  Google Scholar 

  28. Van Thuan, N., Bui, H.T., Kim, J.H., Hikichi, T., Wakayama, S., Kishigami, S., Mizutani, E., and Wakayama, T., The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice, Reproduction, 2009, vol. 138, pp. 309–317.

    Article  CAS  Google Scholar 

  29. Wang, F., Kou, Z., Zhang, Y., and Gao, S., Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos, Biol. Reprod., 2007, vol. 77, pp. 1007–1016.

    Article  CAS  Google Scholar 

  30. Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H.S., Viable offspring derived from fetal and adult mammalian cells, Nature, 1997, vol. 385, pp. 810–813.

    Article  CAS  Google Scholar 

  31. Wittayarat, M., Sato, Y., Do, L.T.K., Morita, Y., Chatdarong, K., Techakumphu, M., Taniguchi, M., and Otoi, T., Histone deacetylase inhibitor improves the development and acetylation levels of cat–cow interspecies cloned embryos, Cell. Reprogram., 2013, vol. 15, pp. 301–308.

    Article  CAS  Google Scholar 

  32. Wittayarat, M., Sato, Y., Do, L.T.K., Chatdarong, K., Tharasanit, T., Techakumphu, M., Taniguchi, M., and Otoi, T., Epigenetic modulation on cat–cow interspecies somatic cell nuclear transfer embryos by treatment with trichostatin A, Anim. Sci. J., 2017, vol. 88, pp. 593–601.

    Article  CAS  Google Scholar 

  33. Wu, X., Li, Y., Xue, L., Wang, L., Yue, Y., Li, K., Bou, S., Li, G.P., and Yu, H., Multiple histone site epigenetic modifications in nuclear transfer and in vitro fertilized bovine embryos, Zygote, 2011, vol. 19, pp. 31–45.

    Article  CAS  Google Scholar 

  34. Yin, X.J., Lee, Y.H., Jin, J.Y., Kim, N.H., and Kong, I.K., Nuclear and microtubule remodeling and in vitro development of nuclear transferred cat oocytes with skin fibroblasts of the domestic cat (Felis silvestris catus) and leopard cat (Prionailurus bengalensis), Anim. Reprod. Sci., 2006, vol. 95, pp. 307–315.

    Article  CAS  Google Scholar 

  35. Zhao, J., Ross, J.W., Hao, Y., Spate, L.D., Walters, E.M., Samuel, M.S., Rieke, A., Murphy, C.N., and Prather, R.S., Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer, Biol. Reprod., 2009, vol. 81, pp. 525–530.

    Article  CAS  Google Scholar 

  36. Zhao, J., Hao, Y., Ross, J.W., Spate, L.D., Walters, E.M., Samuel, M.S., Rieke, A., Murphy, C.N., and Prather, R.S., Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos, Cell. Reprogram., 2010, vol. 12, pp. 75–83.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the staff of the Meat Inspection Office of Kitakyushu City, Japan, for supplying the bovine and porcine ovaries.

Funding

This study was supported in part by a grant from the Japan Society for the Promotion of Science to T. O. (22580320).

Author information

Authors and Affiliations

Authors

Contributions

L. D. and M. W. performed the experiments. Y. S. and T. O. designed the experiments and F. T., M. T., K. C, and M. T. conducted the image analyses. T. T. and M. T. conducted the statistical analyses. M. W. and Y. S. wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Y. Sato.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare no conflicts of interest associated with this manuscript. This article does not contain any studies involving animals or human participants performed by any of the authors.

DATA ACCESSIBILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, L.T., Wittayarat, M., Sato, Y. et al. Comparison of Blastocyst Development between Cat-Cow and Cat-Pig Interspecies Somatic Cell Nuclear Transfer Embryos Treated with Trichostatin A. Biol Bull Russ Acad Sci 48, 107–117 (2021). https://doi.org/10.1134/S1062359021020035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021020035

Keywords:

Navigation