Skip to main content
Log in

Changes in the Composition and Fluorescent Properties of Bisretinoids in the Retina and the Retinal Pigment Epithelium of the Mouse Eye under Exposure to Ionizing Radiation

  • MATERIALS FROM THE INTERNATIONAL CONFERENCE “RADIATION EXPOSURE-RELATED PROBLEMS OF CHEMICAL PROTECTION AND REPAIR” (DUBNA, 30–31 MAY, 2018)
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Fluorescence and chromatographic analysis of bisretinoids from the retina and retinal pigment epithelium of mouse eyes was carried out before and after exposure to accelerated protons in the Bragg peak. It has been shown that ionizing radiation at doses of 1–4 Gy leads to a shift in the short-wave region of the maximum of the fluorescence spectrum in the chloroform extract obtained from both the retinal pigment epithelium and the retina. Chromatographic analysis of these extracts has shown a change in the relative content of individual bisretinoids. The obtained spectral and chromatographic data indicate that the exposure of mice to accelerated protons in the Bragg peak at doses of 1–4 Gy leads to radiation oxidation of bisretinoids in eye tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Grigorev, A.I., Krasavin, E.A., and Ostrovsky, M.A., Galactic heavy charged particles damaging effect on biological structures, Ross. Fiziol. Zh. im. I.M. Sechenova, 2013, vol. 99, no. 3, pp. 273–280.

    CAS  Google Scholar 

  2. Tommasino, F. and Durante, M., Proton radiobiology, Proton Radiobiol. Cancers, 2015, vol. 7, no. 1, pp. 353–381.

    CAS  Google Scholar 

  3. Liu, C.Y., Francis, J.H., Brodie, S.E., et al., Retinal toxicities of cancer therapy drugs, Retina, 2014, vol. 34, no. 7, pp. 1261–1280.

    Article  CAS  Google Scholar 

  4. Worgul, B.V., Accelerated heavy particles and the lens, Ophthal. Res., 1988, vol. 20, no. 3, pp. 143–148.

    Article  CAS  Google Scholar 

  5. Jung, T., Bader, N., and Grune, T., Lipofuscin: formation, distribution, and metabolic consequences, Ann. N.Y. Acad. Sci., 2007, vol. 1119, pp. 97–111.

    Article  CAS  Google Scholar 

  6. Geng, L., Wihlmark, U., and Algvere, P.V., Lipofuscin accumulation in iris pigment epithelial cells exposed to photoreceptor outer segments, Exp. Eye Res., 1999, vol. 69, pp. 539–546.

    Article  CAS  Google Scholar 

  7. Sparrow, J.R. and Boulton, M.E., RPE lipofuscin and its role in retinal photobiology, Exp. Eye Res., 2005, vol. 80, pp. 595–606.

    Article  CAS  Google Scholar 

  8. Holz, F.G., Pauleikhoff, D., Klein, R., and Bird, A.C., Pathogenesis of lesions in late age-related macular disease, Am. J. Ophthalmol., 2004, vol. 137, pp. 504–510.

    Article  Google Scholar 

  9. Ostrovsky, M.A., Dontsov, A.E., Sakina, N.L., Boulton, M., and Jarvis-Evans, J., The ability of lipofuscin granules from lipids under exposure to visible light, Sensor. Sistemy, 1992, vol. 6, no. 3, pp. 51–54.

    Google Scholar 

  10. Boulton, M., Dontsov, A., Jarvis-Evans, J., Ostrovsky, M., and Svistunenko, D., Lipofuscin is a photoinducible free radical generator, J. Photochem. Photobiol. B, 1993, vol. 19, pp. 201–204.

    Article  CAS  Google Scholar 

  11. Von Ruckmann, A., Fitzke, F.W., and Bird, A.C., In vivo fundus autofluorescence in macular dystrophies, Arch. Ophthalmol., 1997, vol. 115, pp. 609–615.

    Article  CAS  Google Scholar 

  12. Feldman, T.B., Yakovleva, M.A., Arbukhanova, P.M., et al., Changes in spectral properties and composition of lipofuscin fluorophores from human-retinal-pigment epithelium with age and pathology, Anal. Bioanal. Chem., 2015, vol. 407, no. 4, pp. 1075–1088.

    Article  CAS  Google Scholar 

  13. Wu, Y., Fishkin, N.E., Pande, A., et al., Novel lipofuscin bis-retinoids prominent in human retina and in a model of recessive Stargardt disease, J. Biol. Chem., 2009, vol. 284, pp. 20155–20166.

    Article  CAS  Google Scholar 

  14. Sparrow, J.R., Zhou, J., and Cai, B., DNA is a target of the photodynamic effects elicited in A2E-laden RPE by blue-light illumination, Invest. Ophthalmol. Visual Sci., 2003, vol. 44, pp. 2245–2251.

    Article  Google Scholar 

  15. Feldman, T.B., Yakovleva, M.A., Larichev, A.V., et al., Spectral analysis of fundus autofluorescence pattern as a tool to detect early stages of degeneration in the retina and retinal pigment epithelium, Eye, 2018, vol. 32, no. 9, pp. 1440–1448. https://doi.org/10.1038/s41433-018-0109-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chien, T., Tseng, T.L., Wang, J.Y., et al., Candida albicans DBF4 gene inducibly duplicated by the mini-Ura-blaster is involved in hypha-suppression, Mutat. Res., 2015, vol. 779, pp. 78–85.

    Article  CAS  Google Scholar 

  17. Saha, A.K., Kappes, F., Mundade, A., et al., Intercellular trafficking of the nuclear oncoprotein DEK, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 17, pp. 6847–6852.

    Article  CAS  Google Scholar 

  18. Kobashigawa, S., Suzuki, K., and Yamashita, S., Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells, Biochem. Biophys. Res. Commun., 2011, vol. 414, no. 4, pp. 795–800.

    Article  CAS  Google Scholar 

  19. Folch, J., Lees, M., and Stanley, G.H.S., A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    CAS  PubMed  Google Scholar 

  20. Parish, C.A., Hashimoto, M., Nakanishi, K., et al., Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium, Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, no. 25, pp. 14609–14613.

    Article  CAS  Google Scholar 

  21. Feldman, T.B., Yakovleva, M.A., Dontsov, A.E., and Ostrovsky, M.A., Fluorescence and excitation spectra of fluorophores of lipofuscin granules obtained from the retinal pigment epithelium of human cadaver eye, Izv. Akad. Nauk. Ser. Khim., 2010, no. 1, pp. 269–276.

  22. Kim, S.R., Jang, Y.P., Jockusch, S., et al., The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 19273–19278.

    Article  CAS  Google Scholar 

  23. Sparrow, J.R., Wu, Y., Nagasaki, T., et al., Fundus autofluorescence and the bis-retinoids of retina, Photochem. Photobiol. Sci., 2010, vol. 9, pp. 1480–1489.

    Article  CAS  Google Scholar 

  24. Radu, R.A., Mata, N.L., Bagla, A., and Travis, G.H., Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 16, pp. 5928–5933.

    Article  CAS  Google Scholar 

  25. Sparrow, J.R., Wu, Y., Kim, C.Y., and Zhou, J., Phospholipid meets all-trans-retinal: the making of RPE bis-retinoids, Lipid Res., 2010, vol. 51, pp. 247–261.

    Article  CAS  Google Scholar 

  26. Feldman, T.B., Ostrovsky, M.A., Yakovleva, M.A., et al., A method for the early detection of age-related macular retinal dystrophy, RF Patent No. 2651126, 2018.

  27. Larichev, A.V., Panchenko, V.Ya., Ostrovsky, M.A., and Feldman, T.B., An optical device for studying the fundus to identify age-related macular degeneration of the retina: a utility model, RF Patent No. 176795, 2018.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 17-29-01028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Yakovleva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovleva, M.A., Lyakhova, K.N., Utina, D.M. et al. Changes in the Composition and Fluorescent Properties of Bisretinoids in the Retina and the Retinal Pigment Epithelium of the Mouse Eye under Exposure to Ionizing Radiation. Biol Bull Russ Acad Sci 46, 1641–1645 (2019). https://doi.org/10.1134/S1062359019120094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019120094

Keywords:

Navigation