Skip to main content
Log in

Crustacea (Branchiopoda) among Organic Remains from Mammoth Hair

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The purpose of this study is to analyze the taxonomic composition of the branchiopod crustaceans (Crustacea: Branchiopoda) from the assemblage of animal and plant remains recovered from fossil mammoth hair found in the Allaikha River basin, Sakha Republic, Russian Federation. We studied the hair structure. AMS radiocarbon dating of both the hair itself and the remains demonstrated their different ages. We found different animal and plant remains in the hair taphocoenosis. The most diverse and numerous remains belong to branchiopod crustaceans: resting eggs and distal portions of the mandibles of Anostraca, distal portions of the mandibles of Notostraca, filtering limbs of some Anostraca or Daphniidae, ephippia of Daphnia (Daphnia) curvirostris, Daphnia (Ctenodaphnia) atkinsoni, and D. (C.) magna. No representatives of D. (Ctenodaphnia) now occur in northeastern Eurasia, but our findings of numerous ephippia in the fossil hair of two mammoths, one from the Allaikha River and the other, studied previously, from the Bol’shaya Chukochya River basin (see Kirillova et al., 2016), show that Daphnia (Ctenodaphnia) taxa occurred in the region at least in the past and were probably common and widely distributed there. The reasons for the extinction of Daphnia (Ctenodaphnia) in northeastern Eurasia require additional special study. We also emphasize the need for further studies of the morphology of ephippia, resting eggs, and mandibles of recent Branchiopoda, which would be essential for adequate identification of Pleistocene remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Adamowicz, S.J., Petrusek, A., Colbourne, J.K., Hebert, P.D.N., and Witt, J.D.S., The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus, Mol. Phylogenet. Evol., 2009, vol. 50, pp. 423–436.

    Article  PubMed  Google Scholar 

  2. Bekker, E.I., Karabanov, D.P., Galimov, Y.R., Haag, C.R., Neretina, T.V., and Kotov, A.A., Phylogeography of Daphnia magna Straus (Crustacea: Cladocera) in Northern Eurasia: evidence for a deep longitudinal split between mitochondrial lineages, PLoS One, 2018, vol. 13, no. 3. e0194045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bennike, O., Palaeoecology of two lake basins from Disko, West Greenland, J. Quat. Sci., 1995, vol. 10, no. 2, pp. 149–155.

    Article  Google Scholar 

  4. Bennike, O. and Böcher, J., Early Weichselian interstadial land biotas at Thule, Northwest Greenland, Boreas, 1992, vol. 21, pp. 111–117.

    Article  Google Scholar 

  5. Benzie, J.A.H., The genus Daphnia (including Daphniopsis) (Anomopoda: Daphniidae), in Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Leiden: Kenobi Productions, Ghent and Backhuys Publishers, 2005, vol. 21.

    Google Scholar 

  6. Berman, D.I., Modern habitats of the pill beetle Morychus viridis (Coleoptera, Byrrhidae) and reconstruction of the environment of the Pleistocene of the North-East of the USSR, Dokl. Akad. Nauk SSSR, 1990, vol. 310, no. 4, pp. 1021–1023.

    Google Scholar 

  7. Bobrov, A.A., Andreev, A.A., Schirrmeister, L., and Siegert, C., Testate amoebae (Protozoa: Testacealobosea and Testaceafilosea) as bioindicators in the late quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2004, vol. 209, pp. 165–181.

    Article  Google Scholar 

  8. Brendonck, L. and Coomans, A., Egg morphology in African Streptocephalidae (Crustacea: Branchiopoda: Anostraca). Part 2: North of Zambezi and Kunene rivers, and Madagascar, Archiv fur Hydrobiologie, 1994, vol. 99, pp. 335–356.

    Google Scholar 

  9. Brendonck, L., Rogers, D.C., Olesen, J., Weeks, S., and Hoeh, W.R., Global diversity of large branchiopods (Crustacea: Branchiopoda) in freshwater, Hydrobiologia, 2008, vol. 595, pp. 167–176.

    Article  Google Scholar 

  10. Chaoruangrit, L., Plodsomboon, S., Rogers, D.C., and Sanoamuang, L.O., Morphology of mandibles and food size in two fairy shrimps (Branchiopoda: Anostraca) from Thailand, J. Crustacean Biol., 2017, vol. 37, no. 5, pp. 579–587.

    Article  Google Scholar 

  11. Chernova, O.F., Kirillova, I.V., Boeskorov, G.G., and Shidlovskii, F.K., Identification of hairs of the wooly mammoth Mammuthus primigenius and wooly rhinoceros Coelodonta antiquitatis using scanning electron microscopy, Dokl. Biol. Sci., 2015a, vol. 463, pp. 205–210.

    Article  CAS  PubMed  Google Scholar 

  12. Chernova, O.F., Kirillova, I.V., Boeskorov, U.U., Shidlovskiy, F.R., and Kabilov, M.R., Architectonics of the hairs of the woolly mammoth and woolly rhino, Proc. Zool. Inst. Russ. Acad. Sci., 2015b, vol. 319, no. 3, pp. 441–460.

    Google Scholar 

  13. Coesel, P.F. and Meesters, K., Desmids of the Lowlands: Mesotaeniaceae and Desmidiaceae of the European Lowlands, Zeist: KNNV Publ., 2007.

    Book  Google Scholar 

  14. Czyż, M.J., Woliński, P., and Gołdyn, B., Cyst morphology of large branchiopod crustaceans (Anostraca, Notostraca, Laevicaudata, Spinicaudata) in western Poland, Biol. Lett., 2016, vol. 53, no. 2, pp. 79–88.

    Article  Google Scholar 

  15. Van Dam, H., Mertens, A., and Sinkeldam, J., A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands, Neth. J. Aquat. Ecol., 1994, vol. 28, pp. 117–133.

    Article  Google Scholar 

  16. Encyclopedia of Quaternary Science, Elias, S. and Mock, C.J., Eds., Amsterdam: Elsevier, 2013, 2nd ed.

    Google Scholar 

  17. Figuerola, J. and Green, A.J., Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies, Freshwater Biol., 2002, vol. 47, no. 3, pp. 483–494.

    Article  Google Scholar 

  18. Flössner, D., A paedomorphic form type of Daphnia triquetra Sars, 1903 (Cladocera, Daphniidae) from Mongolia, Hydrobiologia, 1987, vol. 145, pp. 47–49.

    Article  Google Scholar 

  19. Frolova, L.A., Ibragimova, A.G., Ulrich, M., and Wetterich, S., Reconstruction of the history of a thermokarst lake in the Mid-Holocene based on an analysis of subfossil Cladocera (Siberia, Central Yakutia), Contemp. Probl. Ecol., 2017, vol. 10, pp. 423–430.

    Article  Google Scholar 

  20. Fryer, G., Studies on the functional morphology and biology of the Notostraca (Crustacea: Branchiopoda), Philos. Trans. R. Soc. London, Ser. B, 1988, vol. 321, pp. 27–124.

    Article  Google Scholar 

  21. Fryer, G., Functional morphology and the adaptive radiation of the Daphniidae (Branchiopoda: Anomopoda), Philos. Trans. R. Soc. London, Ser. B, 1991, vol. 331, pp. 1–99.

    Article  Google Scholar 

  22. Glagolev, S.M., Structure of ephippium surface in Daphniidae (Crustacea, Cladocera) according to scanning electron microscopy data, Zool. Zh., 1983, vol. 62, no. 9, pp. 1422–1425.

    Google Scholar 

  23. Glagolev, S.M., Genus Daphnia, in Opredelitel’ presnovodnykh bespozvonochnykh Rossii i sopredel’nykh territorii (Identification Guide to Freshwater Invertebrates of Russia and Adjacent Countries), vol. 2: Rakoobraznye (Crustaceans), Alekseev, V.R., Ed., St. Petersburg: Zool. Inst., 1995, pp. 48–58.

  24. Ishida, S., Kotov, A.A., and Taylor, D.J., A new divergent lineage of Daphnia (Cladocera: Anomopoda) and its morphological and genetical differentiation from Daphnia curvirostris Eylmann, 1887, Zool. J. Linnean Soc., 2006, vol. 146, pp. 385–405.

    Article  Google Scholar 

  25. Juračka, P.J., Kořínek, V., and Petrusek, A., A new Central European species of the Daphnia curvirostris complex, Daphnia hrbaceki sp. nov. (Cladocera, Anomopoda, Daphniidae), Zootaxa, 2010, vol. 2718, pp. 1–22.

    Article  Google Scholar 

  26. Kaplina, T.N., Sher, A.V., Giterman, R.E., Zazhigin, V.S., Kiselev, S.V., et al., The support section of the Pleistocene deposits on the Allaikha River (Indigirka River low reaches), Byull. Komissii Izuch. Chetvertichn. Perioda, 1980, no. 50, pp. 73–95.

  27. Kienast, F., Wetterich, S., Kuzmina, S., Schirrmeister, L., Andreev, A.A., et al., Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present-day Arctic coast in western Beringia during the Last Interglacial, Quat. Sci. Rev., 2011, vol. 30, pp. 2134–2159.

    Article  Google Scholar 

  28. Kirillova, I.V., Argant, J., Lapteva, E.G., Korona, O.M., Van der Plicht, J., et al., The diet and environment of mammoths in North-East Russia reconstructed from the contents of their feces, Quat. Int., 2016, vol. 406, pp. 147–161.

    Article  Google Scholar 

  29. Kirillova, I.V., Van der Plicht, J., Gubin, S.V., Zanina, O.G., Chernova, O.F., et al., Taphonomic phenomenon of ancient hair from Glacial Beringia: perspectives for palaeoecological reconstructions, Boreas, 2016a, vol. 45, no. 3, pp. 1–15.

    Article  Google Scholar 

  30. Kiselev, S.V., Pozdnekainozoiskie zhestkokrylye Severo-Vostoka Sibiri (Late Cenozoic Beetles of the North-East Siberia), Moscow: Nauka, 1981.

  31. Klimovskii, A.I., Bekker, E.I., Sinev, A.Yu., Korovchinskii, N.M., Smirnov, N.N., and Kotov, A.A., Cladocera (Srustacea, Branchiopoda) of Central Yakutia. 4. Taxonomic-faunal and zoogeographical analysis, Zool. Zh., 2015, vol. 94, no. 12, pp. 1367–1378.

    Google Scholar 

  32. Korn, M., Rabet, N., Ghate, H.V., Marrone, F., and Hundsdoerfer, A.K., Molecular phylogeny of the Notostraca, Mol. Phylogenet. Evol., 2013, vol. 69, no. 3, pp. 1159–1171.

    Article  PubMed  Google Scholar 

  33. Kosintsev, P.A., Lapteva, E.G., Korona, O.M., and Zanina, O.G., Living environments and diet of the Mongochen mammoth, Gydan Peninsula, Russia, Quat. Int., 2012, vols. 276–277, pp. 253–268.

    Article  Google Scholar 

  34. Kosintsev, P.A., Lapteva, E.G., Trofimova, S.S., Zanina, O.G., Tikhonov, A.N., and van der Plicht, J., Environmental reconstruction inferred from the intestinal contents of the Yamal baby mammoth Lyuba (Mammuthus primigenius Blumenbach, 1799), Quat. Int., 2012a, vol. 255, pp. 231–238.

    Article  Google Scholar 

  35. Kotov, A.A., Morfologiya i filogeniya Anomopoda (Crustacea: Cladocera) (The Morphology and Phylogeny of Anomopoda (Crustacea: Cladocera)), Moscow: Tov. Nauchn. Izd. KMK, 2013.

  36. Kotov, A.A., A critical review of the current taxonomy of the genus Daphnia O.F. Müller, 1785, Zootaxa, 2015, vol. 3911, no. 2, pp. 184–200.

    Article  PubMed  Google Scholar 

  37. Kryzhanovskij, O.L., Belousov, I.A., Kabak, I.I., Kataev, B.M., Makarov, K.V., and Shilenkov, V.G., A Checklist of the Ground Beetles of Russia and Adjacent Lands (Insecta, Coleoptera, Carabidae), Sofia: Pensoft Publ., 1995.

    Google Scholar 

  38. Kuzmina, S.A. and Korotyaev, B.A., A new species of pill beetles of the genus Morychus Er. (Coleoptera, Byrrhidae) from the North-East of the USSR, Entomol. Obozr., 1987, vol. 66, no. 2, pp. 342–344.

    Google Scholar 

  39. Kuzmina, S.A. and Mett’yuz, D.V., Late Cenozoic insects of Beringia, Evraz. Entomol. Zh., 2012, vol. 11, suppl. 1, pp. 59–97.

    Google Scholar 

  40. Kuzmina, S.A., Quaternary insects and environment of Northeastern Asia, Paleontol. J., 2015, vol. 49, no. 7, pp. 679–867.

    Article  Google Scholar 

  41. Lindholm, M., d’Auriac, M.A., Thaulow, J., and Hobæk, A., Dancing around the pole: holarctic phylogeography of the Arctic fairy shrimp Branchinecta paludosa (Anostraca, Branchiopoda), Hydrobiologia, 2016, vol. 772, no. 1, pp. 189–205.

    Article  CAS  Google Scholar 

  42. Mamontovaya fauna russkoi ravniny i vostochnoi Sibiri (Mammoth Fauna of the Russian Plain and Eastern Siberia), Svetovidov, A.N., Ed., Tr. Zool. Inst. Akad. Nauk SSSR, 1997, vol. 72, pp. 1–114.

  43. Mergeay, J., Verschuren, D., and De Meester, L., Daphnia species diversity in Kenya, and a key to the identification of their ephippia, Hydrobiologia, 2005, vol. 542, pp. 261–274.

    Article  Google Scholar 

  44. Mertens, J., Munuswamy, N., De Walsche, C., and Dumont, H.J., The filtration apparatus of Anostraca (Crutacea): species-specific setulation in the genus Streptocephalus,Hydrobiologia, 1991, vol. 212, pp. 187–193.

    Article  Google Scholar 

  45. Mura, G., Morphological features of the mandible related to feeding habits of some Anostraca species, Crustaceana, 1995, vol. 68, no. 1, pp. 83–102.

    Article  Google Scholar 

  46. Mura, G., Pattern of mandibular morphology in Anostraca with some taxonomic remarks, Crustaceana, 1996, vol. 69, pp. 129–154.

    Article  Google Scholar 

  47. Mura, G. and Thiéry, A., Taxonomical significance of scanning electron microscopic morphology of the euphyllopods resting eggs from Morocco. Part I. Anostraca, Vie Milieu, 1986, vol. 36, pp. 125–131.

    Google Scholar 

  48. Proctor, V.W., Viability of crustacean eggs recovered from ducks, Ecology, 1964, vol. 45, no. 3, pp. 656–665.

    Article  Google Scholar 

  49. Richter, S., A comparison of the mandibular gnathal edges in branchiopod crustaceans: implications for the phylogenetic position of the Laevicaudata, Zoomorphology, 2004, vol. 123, pp. 31–44.

    Article  Google Scholar 

  50. Römpler, H., Rohland, N., Lalueza-Fox, K., Willerslev, E., Kuznetsova, T., et al., Nuclear gene indicated coat-color polymorphism in mammoths, Science, 2006, vol. 313, no. 5783, p. 62.

    Article  PubMed  Google Scholar 

  51. Rudaya, N., Protopopov, A., Trofimova, S., Plotnikov, V., and Zhilich, S., Landscapes of the ‘Yuka’ mammoth habitat: a palaeobotanical approach, Rev. Palaeobot. Palynol., 2015, vol. 214, pp. 1–8.

    Article  Google Scholar 

  52. Schirrmeister, L., Siegert, C., Kuznetsova, T., Kuzmina, S., Andreev, A., Kienast, F., et al., Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia, Quat. Int., 2002, vol. 89, pp. 97–118.

    Article  Google Scholar 

  53. Sekretareva, N.A., Sosudistye rasteniya Russkoi Arktiki i sopredel’nykh territorii (Vascular Plants of the Russian Arctic and Adjacent Territories), Moscow: Tov. Nauchn. Izd. KMK, 2004.

  54. Sher, A.V., Kuzmina, S.A., Kuznetsova, T.V., and Sulerzhitsky, TD., New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants and mammals, Quat. Sci. Rev., 2005, vol. 24, pp. 533–569.

    Article  Google Scholar 

  55. Sokolov, V.E. and Sumina, E.B., Morphology of hair of Yuribey mammoth, in Yuribeiskii mamont (Yuribei Mammoth), Sokolov, V.E., Ed., Moscow: Nauka, 1982, pp. 99–103.

  56. Solonevich, N.G., Tikhomirov, B.A., and Ukraintseva, V.V., Preliminary results of the study of plant remains from the gastrointestinal tract of Shandrinsky mammoth (Yakutia), Tr. Zool. Inst., 1977, vol. 63, pp. 1–277.

    Google Scholar 

  57. Stuart, A.J., Kosintsev, P.A., Higham, T.F.G., and Lister, A.M., Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth, Nature, 2004, vol. 431, pp. 684–689.

    Article  CAS  PubMed  Google Scholar 

  58. Thiéry, A., Brtek, J., and Gasc, C., Cyst morphology of European branchiopods (Crustacea: Anostraca, Notostraca, Spinicaudata, Laevicaudata), Bulletin du Museum national d’histoire naturelle. Section A, Zoologie, biologie et ecologie animales, 4th Serie, Paris, 1995, vol. 17, pp. 107–139.

  59. Tomskaya, A.I. and Metel’tseva, E.P., Palinologiya kainozoya Yakutii (Palynology of the Cenozoic of Yakutia), Novosibirsk: Nauka, 1981.

  60. Valente, A., Hair structure of the woolly mammoth, Mammuthus primigenius and the modern elephants Elephas maximus and Loxodonta africana,J. Zool., 1983, vol. 199, pp. 271–274.

    Article  Google Scholar 

  61. Vanschoenwinkel, B., Waterkeyn, A., Nhiwatiwa, T., Pinceel, T., Spooren, E., et al., Passive external transport of freshwater invertebrates by elephant and other mud-wallowing mammals in an African savannah habitat, Freshwater Biol., 2011, vol. 56, no. 8, pp. 1606–1619.

    Article  Google Scholar 

  62. Vekhov, N.V., The lower crustaceans (Crustacea, Entomostraca) of water bodies of the polar deserts and arctic tundras on the islands of the eastern part of the Barents Sea, Vestn. Zool., 1997, vol. 31, nos. 1–2, pp. 25–32.

    Google Scholar 

  63. Vereshchagin, N.K., Pochemu vymerli mamonty? (Why Did Mammoths Become Extinct?), Leningrad: Nauka, 1979.

  64. Wetterich, S., Schirrmeister, L., Meyer, H., Viehberg, F.A., and Mackensen, A., Arctic freshwater ostracods from modern periglacial environments in the Lena River Delta (Siberian Arctic, Russia): geochemical applications for palaeoenvironmental reconstructions, J. Paleolimnol., 2008, vol. 39, pp. 427–449.

    Article  Google Scholar 

  65. Zalenskii, V.V., The microscopic study of some mammoth bodies found in the Berezovka River, in Nauchnye rezul’taty ekspeditsii Imperatorskoi Akademii Nauk po izucheniyu mamonta, naidennogo na reke Berezovke v 1901 (The Scientific Results of the Expedition of the Imperial Academy of Sciences to Study the Mammoth Found on the Berezovka River in 1901), 1909, vol. 2, pp. 21–35.

  66. Zharov, A.A. and Kotov, A.A., Taphocenoses of temporary ponds in the steppe zone of European Russia by algo-zoological analysis of recent sediments, Biol. Bull. (Moscow), 2017, vol. 44, no. 3, pp. 322–330.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This article is dedicated to the 90th anniversary of Nikolai Nikolaevich Smirnov, to whom the authors are deeply grateful for valuable advice on various issues of the study of modern and fossil crustaceans.

All work on the scanning electron microscope was performed at the Center for Collective Use, Instrumental Methods in Ecology, Institute of Ecology and Ecology, Russian Academy of Sciences. Radiocarbon dating of samples was conducted at the Center for Radiocarbon Dating and Electron Microscopy, Institute of Geography, Russian Academy of Sciences.

Funding

The study of animal remains was carried out with the financial support of the Russian Foundation for Basic Research (branchiopods, project no. 18-04-00398; insects, project no. 19-04-00963). The study of phytoliths was carried out within the framework of a state contract of the Institute of Chemical Physics and Biology, Russian Academy of Sciences, project no. AAAA-A18-118013190182-6, and the program of the Presidium of the Russian Academy of Sciences, project no. 55 “Arctic” AAAA-A18-118013190182-3. The study of diatoms was carried out within the framework of the state program to improve the competitiveness of Kazan (Volga) Federal University among the world’s leading scientific and educational centers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Kotov, A. A. Zharov, O. F. Chernova, A. N. Neretina, M. A. Gololobova, S. S. Trofimova, E. V. Zinovyev, E. I. Izyumova, O. G. Zanina, I. V. Kirillova or F. K. Shidlovskiy.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by S. Nikolaeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotov, A.A., Zharov, A.A., Chernova, O.F. et al. Crustacea (Branchiopoda) among Organic Remains from Mammoth Hair. Biol Bull Russ Acad Sci 46, 850–863 (2019). https://doi.org/10.1134/S1062359019080065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019080065

Keywords:

Navigation