Skip to main content
Log in

Differences in Nuclear Dynamics in Mouse GV Oocytes with a Diverse Chromatin Configuration

  • DEVELOPMENTAL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

By means of time-lapse imaging, consistent patterns of nuclei movement in GV oocytes of SN and NSN types, differing in the chromatin configuration and the initial position of the nucleus, were established. Two types of movement specific for the GV oocyte nuclei were shown: directed motion from the periphery to the central region of the oocyte and oscillatory displacements in the central or peripheral region of the oocyte. It was noted that the nuclei of the NSN type oocytes with the initial position at the periphery hardly changed their position and oocytes died 3.5–4 h after the filming started.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alexandre, H., Van Cauwenberge, A., and Mulnard, J., Involvement of microtubules and microfilaments in the control of the nuclear movement during maturation of mouse oocyte, Dev. Biol., 1989, vol. 136, no. 2, pp. 311–320.

    Article  CAS  PubMed  Google Scholar 

  2. Almonacid, M., Ahmed, W.W., Bussonnier, M., Mailly, P., Betz, T., Voituriez, R., Gov, N.S., and Verlhac, M.H., Active diffusion positions the nucleus in mouse oocytes, Nat. Cell Biol., 2015, vol. 17, no. 4, pp. 470–479.

    Article  CAS  PubMed  Google Scholar 

  3. Almonacid, M., Terret, M.E., and Verlhac, M.H., Control of nucleus positioning in mouse oocytes, Semin. Cell Dev. Biol., 2018, vol. 82, pp. 34–40.

  4. Bellone, M., Zuccotti, M., Redi, C.A., and Garagna, S., The position of the germinal vesicle and the chromatin organization together provide a marker of the developmental competence of mouse antral oocytes, Reproduction, 2009, vol. 138, no. 4, pp. 639–643.

    Article  CAS  PubMed  Google Scholar 

  5. Bouniol-Baly, C., Hamraoui, L., Guibert, J., Beaujean, N., Szöllösi, M.S., and Debey, P., Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes, Biol. Reprod., 1999, vol. 60, no. 3, pp. 580–587.

    Article  CAS  PubMed  Google Scholar 

  6. Brunet, S. and Maro, B., Cytoskeleton and cell cycle control during meiotic maturation of the mouse oocyte: integrating time and space, Reproduction, 2005, vol. 130, no. 6, pp. 801–811.

    Article  CAS  PubMed  Google Scholar 

  7. Brunet, S. and Maro, B., Germinal vesicle position and meiotic maturation in mouse oocyte, Reproduction, 2007, vol. 133, no. 6, pp. 1069–1072.

    Article  CAS  PubMed  Google Scholar 

  8. Brunet, S. and Verlhac, M.H., Positioning to get out of meiosis: the asymmetry of division, Hum. Reprod. Update, 2010, vol. 17, no. 1, pp. 68–75.

    Article  PubMed  Google Scholar 

  9. Coticchio, G., Dal Canto, M., Renzini, M.M., Guglielmo, M.C., Brambillasca, F., Turchi, D., Novara, P.V., and Fadini, R., Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization, Hum. Reprod. Update, 2015, vol. 21, no. 4, pp. 427–454.

    Article  CAS  PubMed  Google Scholar 

  10. Debey, P., Szollosi, M.S., Szollosi, D., Vautier, D., Girousse, A., and Besombes, D., Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics, Mol. Reprod. Dev., 1993, vol. 36, no. 1, pp. 59–74.

    Article  CAS  PubMed  Google Scholar 

  11. Ferreira, E.M., Vireque, A.A., Adona, P.R., Meirelles, F.V., Ferriani, R.A., and Navarro, P.A.A.S., Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence, Theriogenology, 2009, vol. 71, no. 5, pp. 836–848.

    Article  CAS  PubMed  Google Scholar 

  12. Inoue, A., Nakajima, R., Nagata, M., and Aoki, F., Contribution of the oocyte nucleus and cytoplasm to the determination of meiotic and developmental competence in mice, Hum. Reprod., 2008, vol. 23, no. 6, pp. 1377–1384.

    Article  CAS  PubMed  Google Scholar 

  13. De La Fuente, R., Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes, Dev. Biol., 2006, vol. 292, no. 1, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  14. Levi, M., Ghetler, Y., Shulman, A., and Shalgi, R., Morphological and molecular markers are correlated with maturation-competence of human oocytes, Hum. Reprod., 2013, vol. 28, no. 9, pp. 2482–2489.

    Article  CAS  PubMed  Google Scholar 

  15. Li, H., Guo, F., Rubinstein, B., and Li, R., Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes, Nat. Cell Biol., 2008, vol. 10, pp. 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, H. and Aoki, F., Transcriptional activity associated with meiotic competence in fully-grown mouse GV oocytes, Zygote, 2002, vol. 10, no. 4, pp. 327–332.

    Article  CAS  PubMed  Google Scholar 

  17. Metchat, A., Eguren, M., Hossain, J.M., Politi, A.Z., Huet, S., and Ellenberg, J., An actin-dependent spindle position checkpoint ensures the asymmetric division in mouse oocytes, Nat. Comm., 2015, vol. 6, p. 7784.

    Article  CAS  Google Scholar 

  18. Nikolova, V., Markova, M., Zhivkova, R., Chakarova, I., Hadzhinesheva, V., and Delimitreva, S., Kariosphere, the enigmatic “surrounded nucleolus” of maturing oocytes, Acta Morphol. Anthropol., 2017, vol. 24, pp. 1–2.

    Google Scholar 

  19. Parfenov, V., Potchukalina, G., Dudina, L., Kostyuchek, D., and Gruzova, M., Human antral follicles: oocyte nucleus and the karyosphere formation (electron microscopic and autoradiographic data), Gamete Res., 1989, vol. 22, no. 2, pp. 219–231.

    Article  CAS  PubMed  Google Scholar 

  20. Sathananthan, A.H., Selvaraj, K., Girijashankar, M.L., Ganesh, V., Selvaraj, P., and Trounson, A.O., From oogonia to mature oocytes: inactivation of the maternal centrosome in humans, Microsc. Res. Tech., 2006, vol. 69, no. 6, pp. 396–407.

    Article  PubMed  Google Scholar 

  21. Schuh, M. and Ellenberg, J., Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes, Cell, 2007, vol. 130, pp. 484–498.

    Article  CAS  PubMed  Google Scholar 

  22. Shishova, K.V., Lavrentyeva, E.A., Dobrucki, J.W., and Zatsepina, O.V., Nucleolus-like bodies of fully-grown mouse oocytes contain key nucleolar proteins but are impoverished for rRNA, Dev. Biol., 2015, vol. 397, no. 2, pp. 267–281.

    Article  CAS  PubMed  Google Scholar 

  23. Shishova, K.V., Lavrentyeva, E.A., Khamidullina, A.I., and Zatsepina, O.V., Position of the nucleus in mouse germinal vesicle-stage oocytes with different chromatin configurations, Russ. J. Dev. Biol., 2016, vol. 47, no. 6, pp. 313–319.

    Article  Google Scholar 

  24. Talbot, P., Geiske, C., and Knoll, M., Oocyte pickup by the mammalian oviduct, Mol. Biol. Cell, 1999, vol. 10, no. 1, pp. 5–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan, J.H., Wang, H.L., Sun, X.S., Liu, Y., Sui, H.S., and Zhang, J., Chromatin configurations in the germinal vesicle of mammalian oocytes, Mol. Hum. Reprod., 2009, vol. 15, no. 1, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Verlhac, M.H., Lefebvre, C., Guillaud, P., Rassinier, P., and Maro, B., Asymmetric division in mouse oocytes: with or without Mos, Curr. Biol., 2000, vol. 10, no. 20, pp. 1303–1306.

    Article  CAS  PubMed  Google Scholar 

  27. Zuccotti, M., Rossi, P.G., Martinez, A., Garagna, S., Forabosco, A., and Redi, C.A., Meiotic and developmental competence of mouse antral oocytes, Biol. Reprod., 1998, vol. 58, no. 3, pp. 700–704.

    Article  CAS  PubMed  Google Scholar 

  28. Zuccotti, M., Ponce, R.H., Boiani, M., Guizzardi, S., Govoni, P., Scandroglio, R., Garagna, S., and Redi, C.A., The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst, Zygote, 2002, vol. 10, no. 1, pp. 73–78.

    Article  PubMed  Google Scholar 

  29. Zuccotti, M., Garagna, S., Merico, V., Monti, M., and Redi, C.A., Chromatin organisation and nuclear architecture in growing mouse oocytes, Mol. Cell Endocrinol., 2005, vol. 234, nos. 1–2, pp. 11–17.

    Article  CAS  PubMed  Google Scholar 

  30. Zuccotti, M., Merico, V., Cecconi, S., Redi, C.A., and Garagna, S., What does it take to make a developmentally competent mammalian egg?, Hum. Reprod. Update, 2011, vol. 17, no. 4, pp. 525–540.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Lavrentyeva.

Additional information

Translated by N. Onishchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrentyeva, E.A., Shishova, K.V. & Zatsepina, O.V. Differences in Nuclear Dynamics in Mouse GV Oocytes with a Diverse Chromatin Configuration. Biol Bull Russ Acad Sci 46, 332–341 (2019). https://doi.org/10.1134/S1062359019040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019040095

Navigation