Skip to main content
Log in

Characterization of Phytase Transgenic Wheat under Salt Stress

  • BOTANY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Wheat is the major cereal crop. It is grown to meet the demand of food in developing countries but salinity is the serious problem in some countries which are based on agriculture. In the present study fourteen transgenic lines expressing phytase gene were selected using PCR and BASTA leaf paint assay. Different morphological and biochemical analysis that include plant growth, number of spikes, length of spikes, chlorophyll, soluble protein, soluble sugar and proline content were carried out from the leaf of the plants under different stress level of salt. Results showed mostly significant reduction in all the morphological parameters and chlorophyll content with increase in salt concentration while on the other hand in all other parameters, most of them showed significant increment. The result showed that some lines have ability to resist salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Abid, N., Khatoon, A., Maqbool, A., Irfan, M., Bashir, A., Asif, I., and Malik, K.A., Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains, Transgenic Res., 2017, vol. 26, pp. 109–122.

    Article  CAS  PubMed  Google Scholar 

  2. Arnon, D.I., Copper enzymes in isolated chloroplasts; polyphenol-oxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, pp. 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Asgari, H.R., Cornelis, W., and Damme, P.V., Salt stress effect on wheat (Triticum aestivum L.) growth and leaf ion concentrations, Int. J. Plant Prod., 2012, vol. 6, pp. 195–208.

    CAS  Google Scholar 

  4. Ashraf, M.Y., Akhtar, K., Sarwar, G., and Ashraf, M., Evaluation of arid and semi-arid ecotypes of guar (Cyamopsis tetragonoloba L.) for salinity (NaCl) tolerance, J. Arid Environ., 2002, vol. 52, pp. 437–482.

    Article  Google Scholar 

  5. Balal, R.M., Ashraf, M.Y., Khan, M.M., Jaskani, M.J., and Ashfaq, M., Influence of salt stress on growth and biochemical parameters of citrus rootstocks, Pak. J. Bot., 2011, vol. 43, pp. 2135–2141.

    Google Scholar 

  6. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  7. Brinch-Pedersen, H., Olesen, H., Soren, K., Rasmussen, S.K., and Holm, P.B., Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase, Mol. Breed., 2000, vol. 6, pp. 195–206.

    Article  CAS  Google Scholar 

  8. Chen, R., Xue, G., Chen, P., Yao, B., Yang, W., and Ma, Q., Transgenic maize plants expressing a fungal phytase gene, Transgenic Res., 2008, vol. 17, pp. 633–643.

    Article  CAS  PubMed  Google Scholar 

  9. Datta, J.K., Nag, S., Banerjee, A., and Mondal, N.K., Impact of salt stress on five varieties of wheat (Triticum aestivum L.) cultivars under laboratory condition, J. Appl. Sci. Environ. Manage., 2009, vol. 13, pp. 93–97.

    Google Scholar 

  10. Din, J., Khan, S.U., and Ali, I., Physiological responses of wheat (Triticum aesitivum L.) varieties as influenced by salinity stress, J. Anim. Pl. Sci., 2008, vol. 18, pp. 125–129.

    Google Scholar 

  11. Dionisio, G., Madsen, C.K., Holm, P.B., Welinder, K.G., Jorgensen, M., Stoger, E., Arcalis, E., and Brinch-Pedersen, H., Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice, Plant Physiol., 2011, vol. 15, pp. 1087–1100.

    Article  CAS  Google Scholar 

  12. Fonseca-Maldonado, R., Maller, A., Bonneil, E., Thibault, P., Botelho-Machado, C., Ward, R.J., and Polizeli, M.L.T.M., Biochemical properties of glycosylation and characterization of a histidine acid phosphatase (phytase) expressed in Pichia pastoris, Protein. Expr. Purif., 2014, vol. 99, pp. 43–49.

    Article  CAS  PubMed  Google Scholar 

  13. Gilles, H., Morel, L., Reynolds, C.E., and Siegel, J., The effect of salinity on different developmental stages of an endemic annual plant, Aster laurentianus (Asteraceae), Am. J. Bot., 2001, vol. 88, pp. 62–67.

    Article  Google Scholar 

  14. Gu, R., Fonseca, S., Puskas, L., Hackler, L., Zvara, A., Dudits, D., and Pais, M., Transcript identification and profiling during salt stress and recovery of Populus euphratica, Tree Physiol., 2004, vol. 24, pp. 265–276.

    Article  CAS  PubMed  Google Scholar 

  15. Hoagland, D.R. and Aron, D.I., The Water Culture for Growing Plants without Soil, Calif. Agr. Exp. Stat. Circ., Univ. of California Berkeley Press, CA, 1950, vol. 347.

  16. Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Sridharan, R., and Panneerselvam, R., NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus, C. R. Biol., 2007, vol. 330, pp. 806–813.

    Article  CAS  PubMed  Google Scholar 

  17. Joly, R.J., Maggio, A., and Reddy, M.P., Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity, Env. Exp. Bot., 2000, vol. 44, pp. 31–38.

    Article  Google Scholar 

  18. Kang, T.J. and Yang, M.S., Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants, BMC Biotechnol., 2004, vol. 4.

  19. Khan, M.A., Shirazi, M.U., Ali, M., Mumtaz, S., Shereen, A., and Ashraf, M.Y., Comparative performance of some wheat genotypes growing under saline water, Pak. J. Bot., 2006, vol. 38, pp. 1633–1639.

    Google Scholar 

  20. Khan, A.M., Shirazi, M.U., Khan, M.A., Mujtaba, S.M., Islam, E., Mumtaz, S., Shereen, A., Ansari, R.U., and Ashraf, M.Y., Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aesitivum L.), Pak. J. Bot., 2009, vol. 41, pp. 633–638.

    Google Scholar 

  21. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randle, R.J., Protein measurement with Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  22. Lucca, P., Hurrell, R., and Potrykus, I., Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains, Theor. Appl. Genet., 2001, vol. 102, pp. 392–397.

    Article  CAS  Google Scholar 

  23. Malik, C.P. and Srivastava, A.K., Plant Physiology, New Dehli: Kalyani Publishers, 1979.

  24. Marvi, H., Heidari, M., and Armin, M., Physiological and biochemical responses of wheat cultivars under salinity stress, J. Agr. Biol. Sci., 2011, vol. 6, pp. 35–40.

    Google Scholar 

  25. Moud, A.M. and Maghsoudi, K., Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars, World J. Agricult. Sci., vol. 4, pp. 351–358.

  26. Mujeeb-Kazi, A. and de Leon, J.L., Conventional and alien genetic diversity for salt tolerant wheats: focus on current status and new germplasm development, in Prospects for Saline Agriculture, Dordrecht, 2002, vol. 37, pp. 69–82.

  27. Munns, R., Physiological processes limiting plant growth in saline soils some dogmas and hypotheses, Plant Cell Environ., 1993, vol. 16, pp. 15–24.

    Article  CAS  Google Scholar 

  28. Munns, R. and James, R.A., Screening methods for salinity tolerance: a case study with tetraploid wheat, Plant Soil, 2013, vol. 253, pp. 201–218.

    Article  Google Scholar 

  29. Radi, A.A., Farghaly, F.A., and Hamada, A.M., Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity, J. Biol. Earth Sci., 2013, vol. 3, рр. 72–88.

  30. Rubio, C., Castillo, J.M., Luque, C.J., and Figueroa, M.E., Influence of salinity on germination and seeds viability of two primary colonizers of Mediterranean salt pans, J. Arid Environ., 2003, vol. 53, pp. 145–154.

    Article  Google Scholar 

  31. Sairam, R.K., Rao, K.V., and Srivastava, G.C., Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration, Plant Sci., 2002, vol. 163, pp. 1037–1046.

    Article  CAS  Google Scholar 

  32. Sen, A. and Alikamanoglu, S., Effects of salt stress on growth parameters and antioxidant enzymes of different wheat (Triticum aestivum L.) varieties on in vitro tissue culture, Fresenius Environ. Bull., 2011, vol. 20, pp. 489–495.

    CAS  Google Scholar 

  33. Shahzad, A., Iqbal, M., Asif, M., Hirani, A.H., and Goyal, A., Growing wheat on saline lands: can a dream come true?, Aust. J. Crop Sci., 2013, vol. 7, pp. 515–524.

    Google Scholar 

  34. Shukry, W. and Bayerly, R., Physiological responses of wheat (Triticum aesivum L. cv. Giza 158) seedlings under salt stress conditions, Jordan J. Agricult. Sci., 2012, vol. 8.

  35. Tuna, A.L., Kaya, C., Dikilitas, M., and Higgs, D., The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants, Environ. Exp. Bot., 2008, vol. 62, pp. 1–9.

    Article  CAS  Google Scholar 

  36. Vendruscolo, A.C.G., Schuster, I., Pileggi, M., Scapim, C.A., Molinari, H.B.C., Marur, C.J., and Vieira, L.G.C., Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat, J. Plant. Physiol., 2007, vol. 164, pp. 1367–1376.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Razzaq.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwal, M., Razzaq, A. & Maqbool, A. Characterization of Phytase Transgenic Wheat under Salt Stress. Biol Bull Russ Acad Sci 46, 371–380 (2019). https://doi.org/10.1134/S106235901904006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235901904006X

Keywords:

Navigation