Skip to main content
Log in

Effect of Saline Soils on the Functional State of Species of the Genus Artemisia

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effect of saline soils on the functional state of glycohalophytes of the genus Artemisia (A. santonica, A. pauciflora, and A. lerchiana) in the basin of Lake Elton (Prieltonye) is studied. It is established that the higher levels of water and Na+ content in A. santonica leaves are correlated with a high content of pigments, carbohydrates, and phenolic compounds against the background of more intensive oxidative processes. It is noted that the accumulation of a significant amount of free amino acids is characteristic of the species A. pauciflora and A. lerchiana. At the level of structural components of membranes in A. pauciflora and A. lerchiana leaves, a high level of digalactosyldiacylglycerol and linolenic acid was recorded in the composition of the lipids of thylakoid membranes and an elevated concentration of phosphatidylcholine was found in nonplastid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Arinushkina, E.V., Rukovodstvo po khimicheskomu analizu pochv (Guidance on Chemical Analysis of Soils), Moscow: Mosk. Gos. Univ., 1970.

  2. Balnokin, Yu.V., Myasoedov, N.A., Shamsutdinov, Z.Sh., and Shamsutdinov, N.Z., Significance of Na+and K+for sustained hydration of organ tissues in ecologically distinct halophytes of the family Chenopodiaceae, Russ. J. Plant Physiol., 2005, vol. 52, no. 6, pp. 778–788.

    Google Scholar 

  3. Dajic, Z., Salt stress, in Physiology and Molecular Biology of Stress Tolerance in Plant, Madhava Rao, K.V., Raghavendra, A.S., and Janardhan Reddy, K., Eds., Netherlands: Springer, 2006, pp. 41–101.

    Google Scholar 

  4. Deme, B., Cataye, C., Block, M.A., Marechal, E., and Jouhet, J., Contribution of galactoglycerolipids to the 3‑dimensional architecture of thylakoids, FASEB J., 2014, vol. 28, pp. 3373–3383.

    Article  CAS  PubMed  Google Scholar 

  5. Droge, D., Free radical in physiological control of cell function, Physiol. Rev., 2002, vol. 82, pp. 47–95.

    Article  CAS  PubMed  Google Scholar 

  6. Dymova, O. and Fiedor, L., Chlorophylls and their role in photosynthesis, in Photosynthetic Pigments—Chemical Structure, Biological Function and Ecology, Golovko, T.K., Gruszeski, W.I., Prasad, M.N.V., and Strzalka, K., Eds., Syktyvkar: Komi Sci. Centre, Ural Branch, Ross. Akad. Nauk, 2014, pp. 140–160.

    Google Scholar 

  7. Flowers, T.J. and Colmer, T.D., Salinity tolerance in halophytes, New Phytol., 2008, vol. 179, pp. 945–963.

    Article  CAS  PubMed  Google Scholar 

  8. Franco, O.L. and Melo, F.R., Osmoprotectants—a plant strategy in response to osmotic stress, Russ. J. Plant Physiol., 2000, vol. 47, no. 1, pp. 137–144.

    CAS  Google Scholar 

  9. Glyad, V.M., Determination of monosaccharides, disaccharides, and oligosaccharides in the same plant sample by high-performance liquid chromatography, Russ. J. Plant Physiol., 2002, vol. 49, no. 2, pp. 277–282.

    Article  CAS  Google Scholar 

  10. Heuer, B., Influence of exogenous application of proline and glycinebetaine on growth of salt stressed tomato plants, Plant Sci., 2003, vol. 165, pp. 693–699.

    Article  CAS  Google Scholar 

  11. Ishikawa, S.-I. and Kachi, N., Differential salt tolerance of two Artemisia species growing in contrasting coastal habitats, Ecol. Res., 2000, vol. 15, pp. 241–247.

    Article  CAS  Google Scholar 

  12. Kaur, N. and Gupta, A.K., Signal transduction pathways under abiotic stresses in plant, Curr. Sci., 2005, vol. 88, no. 11, pp. 1771–1780.

    CAS  Google Scholar 

  13. Chromatography: Applications, Heftmann, E., Ed., Amsterdam: Elsevier, 1983.

    Google Scholar 

  14. Krumova, S., Zhiponova, M., Dankov, K., Velikova, V., Balashev, K., Andreeva, T., Russinova, E., and Taneva, S., Brassinosteroids regulate the thylakoid membrane architecture and the photosystem II function, J. Photochem. Photobiol. B, 2013, vol. 126, pp. 97–104.

    Article  CAS  PubMed  Google Scholar 

  15. Ksouri, R., Smaoui, A., Isoda, H., and Abdelly, C., Utilization of halophyte species as new sources of bioactive substances, J. Arid Land Stud., 2012, vol. 22, pp. 41–44.

    Google Scholar 

  16. Labudda, M., Lipid Peroxidation as a Biochemical Marker for Oxidative Stress During Drought. An Effective Tool for Plant Breeding, E-wydawnictwo, Poland, 2013, pp. 1–12. http://www.e-wydawnictwo.eu/Document/DocumentPre-view/3342.

    Google Scholar 

  17. Lichtenthaler, H.K., Chlorophyll and carotinoids: pigments of photosynthetic biomembranes, Meth. Enzyimol., 1987, vol. 48, pp. 331–382.

    Google Scholar 

  18. Lukatkin, A.S. and Golovanova, V.S., The intensity of lipid peroxidation in leaves refrigerated thermophytes, Fiziol. Rast., 1988, no. 4, pp. 773–780.

  19. Lysenko, T.M., Characteristic of vegetation of alkaline soils of specially protected natural territories—Elton and Baskunchak, Vektor Nauki Tol’yatti. Gos. Univ., 2013, no. 2, pp. 47–53.

  20. Mansour, M.M.F., Salama, K.H.A., Al-Mutawa, M.M., and Abou Hadid, A.F., Effect of NaCl and polyamines on plasma membrane lipids of wheat roots, Biol. Plant., 2002, vol. 45, pp. 235–239.

    Article  CAS  Google Scholar 

  21. Markovskaya, E.F., Sergienko, L.A., and Starodubtseva, A.A., Pigment apparatus of some species of higher plants of the coastal zone of the tidal Arctic seas, Fundam. Issled., 2012, no. 1, pp. 160–163.

  22. Metodicheskie ukazaniya po provedeniyu razrusheniya organicheskikh veshchestv v prirodnykh, pit’evykh, stochnykh vodakh i pishchevykh produktakh na mikrovolnovoi sisteme “Minotavr-2” (Guidelines for the Destruction of Organic Matter in Natural, Drinking, and Waste Waters and in Food Products in the Minotaur-2 Microwave System), St. Petersburg: Lumex, 2005.

  23. Metody biokhimicheskogo issledovaniya rastenii (Methods of Biochemical Analysis of Plants), Ermakov, A.I., Ed., Leningrad: Kolos, 1972.

    Google Scholar 

  24. Munns, R. and Tester, M., Mechanisms of salinity tolerance, Ann. Rev. Plant Biol., 2008, pp. 651–681.

  25. Pankova, E.I., Salinization of irrigated soils in the Middle-Asian region: old and new issues, Arid Ecosyst., 2016, vol. 6, no. 4, pp. 241–248.

    Article  Google Scholar 

  26. Parida, A.K. and Das, A.B., Salt tolerance and salinity effects on plants: a review, Ecotoxic. Envir. Safety, 2005, vol. 60, pp. 324–349.

    Article  CAS  Google Scholar 

  27. Pekal, A. and Pyrzynska, K., Valuation of aluminium complexation reaction for flavonoid content assay, Food Analyt. Meth., 2014, vol. 60, pp. 324–349.

    Google Scholar 

  28. Rozentsvet, O.A., Nesterov, V.N., and Bogdanova, E.S., Membrane-forming lipids of wild halophytes growing under the conditions of Prieltonie of South Russia, Phytochemistry, 2014, vol. 105, pp. 37–42.

    Article  CAS  PubMed  Google Scholar 

  29. Sui, N., Li, M., Li, K., Song, J., and Wang, B.-S., Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity, Photosynthetica, 2010, vol. 48, pp. 623–629.

    Article  CAS  Google Scholar 

  30. Tarchevskii, I.A., Metabolizm rastenii pri stresse (Plant Metabolism in Stress), Kazan: Fen, 2001.

  31. Vodno-bolotnye ugod’ya Priel’ton’ya (Wetlands of Prieltonie), Volgograd: Regional’nyi tsentr po izucheniyu i sokhraneniyu bioraznoobraziya, 2005.

  32. Watson, L.E., Bates, P.L., Evans, T.M., Unwin, M.M., and Estes, J.R., Molecular phylogeny of subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera, BMC Evol. Biol., 2002, vol. 2, pp. 1–12.

    Article  Google Scholar 

  33. Wu, J., Seliskar, D.M., and Gallagher, J.L., The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress, Am. J. Bot., 2005, vol. 92, pp. 852–858.

    Article  CAS  PubMed  Google Scholar 

  34. Yan, S.H. and Zhou, H.M., Role of osmolytes as cheperones during the refolding of aminoacylase, Biochem. Cell Biol., 2006, vol. 84, pp. 30–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Rozentsvet.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozentsvet, O.A., Nesterov, V.N., Bogdanova, E.S. et al. Effect of Saline Soils on the Functional State of Species of the Genus Artemisia. Biol Bull Russ Acad Sci 46, 294–301 (2019). https://doi.org/10.1134/S1062359019030099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019030099

Navigation