Skip to main content
Log in

The Study of Cognitive-Stimulating Activity of Fluorinated Tetrahydrocarbazole Derivatives and Behavioral Responses in Transgenic Tg6799 Mice with Alzheimer’s Disease

  • HUMAN AND ANIMAL PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The cognitive-stimulating, neuroprotective effects of promising fluorinated tetrahydrocarbazole derivatives (CA-7043x and CA-7050x) on the hippocampus-dependent memory of outbred mice (CD1) and transgenic Tg6799 mice, as well as their effect on anxiety, locomotor activity, and orienting-exploratory behavior of animals, were studied. It was found that both compounds have a pronounced cognitive-stimulating effect on CD1 mice, but do not show neuroprotective effects on memory support in Tg6799 mice. It is noted that, in the open-field test, the CA-7050x compound has a positive effect on the orientating behavior, and the CA-7043x compound has a positive effect on the exploratory response in the nontransgenic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bachurin, S.O., Medical and chemical approaches to directed search for drugs for the treatment and prevention of Alzheimer’s disease, Biomed. Khim., 2001, vol. 47, no. 2, pp. 155–197.

    CAS  Google Scholar 

  2. Bachurin, S.O., Shelkovnikova, T.A., Ustyugov, A.A., Peters, O., Khritankova, I., Afanasieva, M.A., Tarasova, T.V., Alentov, I.I., Buchman, V.L., and Ninkina, N.N., Dimebon slows progression of proteinopathy in gamma-synuclein transgenic mice, Neurotoxicol. Res., 2012, vol. 22, no. 1, pp. 33–42.

    Article  CAS  Google Scholar 

  3. Bachurin, S.O., Sokolov, V.B., Aksinenko, A.Yu., Epishina, T.A., Goreva, T.V., Gabrel’yan, A.V., and Grigor’ev, V.V., Molecular design of multitarget neuroprotectors. 1. Synthesis and biological activity of conjugates of substituted indoles with bis(dimethylamino)phenothiazine, Izv. Akad. Nauk, Ser. Khim., 2015, no. 6, pp. 1354–1361.

  4. Barker, G.R. and Warburton, E.C., When is the hippocampus involved in recognition memory?, J. Neurosci., 2011, vol. 31, no. 29, pp. 10721–10731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barker, G.R. and Warburton, E.C., Object-in-place associative recognition memory depends on glutamate receptor neurotransmission within two defined hippocampal-cortical circuits: a critical role for AMPA and NMDA receptors in the hippocampus, perirhinal, and prefrontal cortices, Cereb. Cortex, 2015, vol. 25, no. 2, pp. 472–481.

    Article  PubMed  Google Scholar 

  6. Boinpally, R., Chen, L., Zukin, S.R., McClure, N., Hofbauer, R.K., and Periclou, A., A novel once-daily fixed-dose combination of memantine extended release and donepezil for the treatment of moderate to severe Alzheimer’s disease: two phase I studies in healthy volunteers, Clin. Drug Invest., 2015, vol. 35, no. 7, pp. 427–435.

    Article  CAS  Google Scholar 

  7. Carey, A.N., Lyons, A.M., Shay, Ch.F., Dunton, O., and McLaughlin, J.P., Endogenous kappa opioid activation mediates stress-induced deficits in learning and memory, J. Neurosci., 2009, vol. 29, no. 13, pp. 4293–4300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clerici, F., Vanacore, N., Elia, A., Spila-Alegiani, S., Pomati, S., Da Cas, R., Raschetti, R., and Mariani, C., Memantine in moderately-severe-to-severe Alzheimer’s disease: a post-marketing surveillance study, Drugs Aging, 2009, vol. 26, no. 4, pp. 321–332.

    Article  CAS  PubMed  Google Scholar 

  9. Doody, R.S., Gavrilova, S.I., Sano, M., Thomas, R.G., Aisen, P.S., Bachurin, S.O., and Hung, D., Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study, Lancet, 2008, vol. 372, no. 9634, pp. 207–215.

    Article  CAS  PubMed  Google Scholar 

  10. Eimer, W.A. and Vassar, R., Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and caspase-3 activation, Mol. Neurodegener., 2013, vol. 8, pp. 1–12.

    Article  CAS  Google Scholar 

  11. Ennaceur, A., One-trial object recognition in rats and mice: methodological and theoretical issues, Behav. Brain Res., 2010, vol. 215, no. 2, pp. 244–254.

    Article  CAS  PubMed  Google Scholar 

  12. Fu, A.K., Hung, K.W., Yuen, M.Y., Zhou, X., Mak, D.S., Chan, I.C., Cheung, T.H., Zhang, B., Fu, W.Y., Liew, F.Y., and Ip, N.Y., IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 19, pp. E2705–E2713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goozee, K.G., Shah, T.M., Sohrabi, H.R., Rainey-Smith, S.R., Brown, B., Verdile, G., and Martins, R.N., Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease, Br. J. Nutr., 2016, vol. 115, no. 3, pp. 449–465.

    Article  CAS  PubMed  Google Scholar 

  14. Howard, R., McShane, R., Lindesay, J., Ritchie, C., Baldwin, A., Barber, R., Burns, A., Dening, T., Findlay, D., Holmes, C., Hughes, A., Jacoby, R., Jones, R., Jones, R., McKeith, I., Macharouthu, A., O’Brien, J., Passmore, P., Sheehan, B., Juszczak, E., Katona, C., Hills, R., Knapp, M., Ballard, C., Brown, R., Banerjee, S., Onions, C., Griffin, M., Adams, J., Gray, R., Johnson, T., Bentham, P., and Phillips, P., Donepezil and memantine for moderate-to-severe Alzheimer’s disease, N. Engl. J. Med., 2012, vol. 366, pp. 893–903.

    Article  CAS  PubMed  Google Scholar 

  15. Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T.A., and Wirths, O., Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer’s disease, Neurobiol. Aging, 2012, vol. 33, no. 1. p. 196. e29–e196. e40.

  16. Joyashiki, E., Matsuya, Y., and Tohda, C., Sominone improves memory impairments and increases axonal density in Alzheimer’s disease model mice, 5XFAD, Int. J. Neurosci., 2011, vol. 121, no. 4, pp. 181–190.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, D.S., Pan, X.D., Zhang, J., Shen, H., Collins, N.C., Cole, A.M., Koster, K.P., Ben Aissa, M., Dai, X.M., Zhou, M., Tai, L.M., Zhu, Y.G., La Du, M., and Chen, X.C., APOE4 enhances age-dependent decline in cognitive function by down-regulating an NMDA receptor pathway in EFAD-Tg mice, Mol. Neurodegener., 2015, vol. 10, no. 7, pp. 1–17.

    Article  CAS  Google Scholar 

  18. Lonskaya, I., Hebron, M., Chen, W., Schachter, J., and Moussa, C., Tau deletion impairs intracellular β-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models, Mol. Neurodegener., 2014, vol. 9, no. 46, pp. 1–16.

    Article  CAS  Google Scholar 

  19. Malatynska, E., Steinbusch, H.W., Redkozubova, O., Bolkunov, A., Kubatiev, A., Yeritsyan, N.B., Vignisse, J., Bachurin, S., and Strekalova, T., Anhedonic-like traits and lack of affective deficits in 18-month-old C57BL/6 mice: implications for modeling elderly depression, Exp. Gerontol., 2012, vol. 47, no. 8, pp. 552–564.

    Article  CAS  PubMed  Google Scholar 

  20. Mancuso, C., Siciliano, R., Barone, E., Butterfield, D.A., and Preziosi, P., Pharmacologists and Alzheimer disease therapy: to boldly go where no scientist has gone before, Exp. Opin. Investig. Drugs, 2011, vol. 20, no. 9, pp. 1243–1261.

    Article  CAS  Google Scholar 

  21. Maslikova, G.V., Bui Thi, Minh Thu, and Arlt, A.V., Experimental substantiation of the combined use of sodium selenite and vitamin E in brain ischemia caused by gravitational overload, Klin. Farmakol. Ter., 2009, no. 6, pp. 279–281.

  22. Nikolaeva, N.S., Sokolov, V.B., Aksinenko, A.Yu., Ovchinnikov, R.K., Bachurin, S.O., and Kinzirskii, A.S., Psychotropic activity of new fluorinated derivatives of tetrahydrocarbasoles, Bull. Exp. Biol. Med., 2015, vol. 160, no. 4, pp. 455–458.

    Article  CAS  Google Scholar 

  23. Nirogi, R.V., Konda, J.B., Kambhampati, R., Shinde, A., Bandyala, T.R., Gudla, P., Kandukuri, K.K., Jayarajan, P., Kandikere, V., and Dubey, P.K., N,N-Dimethyl-[9-(arylsulfonyl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl]amines as novel, potent and selective 5-HT6 receptor antagonists, Bioorg. Med. Chem. Lett., 2012, vol. 22, no. 22, pp. 6980–6985.

    Article  CAS  PubMed  Google Scholar 

  24. Oakley, H., Cole, S.L., Logan, S., Maus, E., Shao, P., Guillozet-Bongaarts, A., Ohno, M., Disterhoft, J., Van Eldik, L., Berry, R., and Vassar, R., Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation, J. Neurosci., 2006, vol. 26, pp. 10129–10140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohno, M., Cole, S.L., Yasvoina, M., Zhao, J., Citron, M., Berry, R., Disterhoft, J.F., and Vassar, R., BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice, Neurobiol. Dis., 2007, vol. 26, no. 1, pp. 134–145.

    Article  CAS  PubMed  Google Scholar 

  26. Peters, O.M., Connor-Robson, N., Sokolov, V.B., Aksinenko, A.Yu., Kukharsky, M.S., Bachurin, S.O., Ninkina, N.N., and Buchman, V.L., Chronic administration of dimebon ameliorates pathology in TauP301S transgenic mice, J. Alzheimer’s Dis., 2013, vol. 33, no. 3, pp. 1041–1049.

    Article  CAS  Google Scholar 

  27. Pieper, A.A., Xie, S., Capota, E., Estill, S.J., Zhong, J., Long, J.M., Becker, G.L., Huntington, P., Goldman, S.E., Shen, C.H., Capota, M., Britt, J.K., Kotti, T., Ure, K., Brat, D.J., Williams, N.S., MacMillan, K.S., Naidoo, J., Melito, L., Hsieh, J., De Brabander, J., Ready, J.M., and McKnight, S.L., Discovery of a proneurogenic, neuroprotective chemical, Cell, 2010, vol. 142, no. 1, pp. 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Réus, G.Z., Valvassori, S.S., Machado, R.A., Martins, M.R., Gavioli, E.C., and Quevedo, J., Acute treatment with low doses of memantine does not impair aversive, non-associative and recognition memory in rats, Naunyn-Schmiedeberg’s Arch. Pharmacol., 2008, vol. 376, no. 5, pp. 295–300.

    Article  CAS  Google Scholar 

  29. Schneider, F., Baldauf, K., Wetzel, W., and Reymann, K.G., Behavioral and EEG changes in male 5xFAD mice, Physiol. Behav., 2014, vol. 135, pp. 25–33.

    Article  CAS  PubMed  Google Scholar 

  30. Shukla, V., Zheng, Y.L., Mishra, S.K., Amin, N.D., Steiner, J., Grant, P., Kesavapany, S., and Pant, H.C., A truncated peptide from p35, a Cdk5 activator, prevents Alzheimer’s disease phenotypes in model mice, FASEB J., 2013, vol. 27, no. 1, pp. 174–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sokolov, V.B., Aksinenko, A.Yu., Grigor’ev, V.V., and Bachurin, S.O., Modification of biologically active amines and amides with fluorinated heterocycles. 8. γ-Carbolines modified with 2-(2-trifluoromethylimidazo[1,2-a]pyridine-6-yl)ethyl fragment, Izv. Akad. Nauk, Ser. Khim., 2013, no. 1, pp. 200–202.

  32. Sokolov, V.B., Aksinenko, A.Yu., Nikolaeva, N.C., Grigor’ev, V.V., Kinzirskii, A.S., and Bachurin, S.O., Modification of biologically active amines and amides with fluorinated heterocycles. 11. Post Tetrahydrocarbazoles modified with 2-(5-fluoropyridin-3-yl)ethyl fragment, Izv. Akad. Nauk, Ser. Khim., 2014, no. 5, pp. 1137–1142.

  33. Sokolov, V.B., Aksinenko, A.Yu., Epishina, T.A., Goreva, T.V., Grigor’ev, V.V., Gabrel’yan, A.V., and Bachurin, S.O., Synthesis and biological activity of N-substituted tetrahydro-γ-carbolines containing the bis(dimethylamino)-phenothiazine fragment, Izv. Akad. Nauk, Ser. Khim., 2015, no. 3, pp. 717–722.

  34. Sonkusare, S.K., Kaul, C.L., and Ramarao, P., Dementia of Alzheimer’s disease and other neurodegenerative disorders—memantine, a new hope, Pharmacol. Res., 2005, vol. 1, no. 1, pp. 1–17.

    Article  CAS  Google Scholar 

  35. Tu, Q., Zou, Y., Zhang, M., Cao, Y., Yang, W., Yu, W., and Lu, Y., Application status of memantine in patients with dementia in the Chongqing area of Southwest China, J. Clin. Gerontol. Geriatr., 2015, vol. 6, no. 3, pp. 85–88.

    Article  Google Scholar 

  36. Ustyugov, A.A., Shelkovnikova, T.A., Kokhan, V.S., Khritankova, I.V., Peters, O., Buchman, V.L., Bachurin, S.O., and Ninkina, N.N., Dimebon reduces the levels of aggregated amyloidogenic protein forms in detergent-insoluble fractions in vivo, Bull. Exp. Biol. Med., 2012, vol. 152, no. 6, pp. 731–733.

    Article  CAS  PubMed  Google Scholar 

  37. Vignisse, J., Steinbusch, H.W., Bolkunov, A., Nunes, J., Santos, A.I., Grandfils, C., Bachurin, S., and Strekalova, T., Dimebon enhances hippocampus-dependent learning in both appetitive and inhibitory memory tasks in mice, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, vol. 35, no. 2, pp. 510–522.

    Article  CAS  PubMed  Google Scholar 

  38. Wirths, O., Erck, C., Martens, H., Harmeier, A., Geumann, C., Jawhar, S., Kumar, S., Multhaup, G., Walter, J., Ingelsson, M., Degerman-Gunnarsson, M., Kalimo, H., Huitinga, I., Lannfelt, L., and Bayer, T.A., Identification of low molecular weight pyroglutamate Aβ oligomers in Alzheimer’s disease: a novel tool for therapy and diagnosis, J. Biol. Chem., 2010, vol. 285, no. 53, pp. 41517–41524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, S., Hedskog, L., Petersen, C.A., Winblad, B., and Ankarcrona, M., Dimebon (latrepirdine) enhances mitochondrial function and protects neuronal cells from death, J. Alzheimers Dis., 2010, vol. 21, no. 2, pp. 389–402.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, D., Chen, M., Li, M., Luo, B., Zhao, Y., Huang, P., Xue, F., Rapposelli, S., Pi, R., and Wen, S., Discovery of novel N-substituted carbazoles as neuroprotective agents with potent anti-oxidative activity, Eur. J. Med. Chem., 2013, vol. 68, pp. 81–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Nikolaeva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaeva, N.S., Maltsev, A.V., Ovchinnikov, R.K. et al. The Study of Cognitive-Stimulating Activity of Fluorinated Tetrahydrocarbazole Derivatives and Behavioral Responses in Transgenic Tg6799 Mice with Alzheimer’s Disease. Biol Bull Russ Acad Sci 46, 268–276 (2019). https://doi.org/10.1134/S1062359019030075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019030075

Navigation