Skip to main content
Log in

Chromothripsis in Hepatocarcinogenesis: The Role of a Micronuclear Aberration and Polyploidy

  • Cell Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

In this study, we used the mouse model of chemically induced hepatocarcinogenesis to investigate the chromosomal aberrations in hepatic cells. The model was obtained by combined treatment of mice with Dipin (radiomimetic drug) followed by partial hepatectomy. Cytological analysis of isolated liver cells treated with Dipin has demonstrated a number of hepatocytes with structural nuclear abnormalities and multiple micronuclei. Karyotype analysis of polyploid hepatocytes has shown numerous chromosomal aberrations including alleged morphological manifestations of chromothripsis, a special type of genomic reorganization characterized by the local disintegration of chromosomes. Micronuclei with chromosomal fragments have developed as a result of double-strand DNA breaks and might serve as the initial substrate for chromothripsis. The emergence of micronuclei containing chromosomal fragments is the most important result of the treatment employed. Therefore, the presented model of liver cancer (hepatocarcinogenesis) can be used to study the process of chromothripsis in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belov, L.N., Kogan, M.E., Leont’eva, T.A., Kostyrev, O.A., and Tsellarius, Yu.G., Preparation of isolated cells by alkaline dissociation of formalin-fixed tissues, Tsitologiia, 1975, vol. 17, pp. 1332–1337.

    PubMed  CAS  Google Scholar 

  • Branzey, D. and Foliani, M., Regulation of DNA repair throughout the cell cycle, Nat. Rev. Mol. Cell Biol., 2008, vol. 9, pp. 297–308.

    Article  CAS  Google Scholar 

  • Crasta, K., Ganem, N.J., Dagher, R., Lantermann, A.B., Ivanova, E.V., Pan, Y.P., Nezi, L., Protopopov, A., Choudry, D., and Pellman, D., DNA breaks and chromosome pulverization from errors in mitosis, Nature, 2012, vol. 482, pp. 53–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faktor, V.M., Uryvaeva, I.V., Sokolova, A.S., Chernov, V.A., and Brodsky, W.Ya., Kinetics of cellular proliferation in regenerated mouse liver pretreated with the alkylating drug dipin, Virchows Archiv. B: Cell Path., 1980, vol. 33, pp. 187–197.

    Article  CAS  Google Scholar 

  • Faktor, V.M., Eliseeva, N.A., and Tamakhina, A.Ya., Effect of the alkylating carcinogen dipin on proliferation, polyploidy development level, and formation of micronuclei in the population of the initial and de novo formed hepatocytes, Izv. Akad. Nauk, Ser. Biol., 1992, vol. 6, pp. 821–834.

    Google Scholar 

  • Factor, V.M., Laskowska, D., Jensen, M.R., Woitach, J.T., Popescu, N.C., and Thorgeirsson, S.S., Vitamin E reduces chromosomal damage and inhibits hepatic tumor formation in a transgenic mouse model, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 2196–2201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fenech, M., Kirsch-Folders, M., Natarajan, A.T., Surralles, J., Crott, J.W., Parry, J., Norppa, H., Eastmond, D.A., Tucker, J.D., and Thomas, P., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells, Mutagenesis, 2011, vol. 26, pp. 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Fukami, M., Shima, H., Suzuki, E., Ogata, T., Matsubara, K., and Kamimaki, T., Catastrophic cellular events leading to complex chromosomal rearrangements in the germline, Clin. Genet., 2017, vol. 91, pp. 653–660.

    Article  PubMed  CAS  Google Scholar 

  • Hatch, E.M., Y chromothripsis, Nat. Cell Biol., 2017, vol. 19, pp. 12–14.

    Article  CAS  Google Scholar 

  • Heng, H.H.Q., Liu, G., Stevens, J.B., Abdallah, B.Y., Horne, S.D., Ye, K.L., Bremer, S.W., Chowdhury, S.K., and Ye, C.J., Karyotype heterogeneity and unclassified chromosomal abnormalities, Cytogenet. Genome Res., 2013, vol. 139, pp. 144–157.

    Article  PubMed  CAS  Google Scholar 

  • Hintzsche, H., Hemann, U., Poth, A., Utesch, D., Lott, J., and Stopper, H., Fate of micronuclei and micronucleated cells, Mutat. Res., 2017, vol. 771, pp. 85–98.

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi, T., Weinfeld, H., and Sandberg, A.A., Chromosome pulverization in micronuclei induced by tritiated thymidine, J. Cell Biol., 1972, vol. 52, pp. 97–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivkov, R. and Bunz, F., Pathways to chromothripsis, Cell Cycle, 2015, vol. 14, pp. 2886–2890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jensen, M.R., Factor, V.M., and Thorgeirsson, S.S., Regulation of cyclin G1 during murine hepatic regeneration following dipin-induced DNA damage, Hepatology, 1998, vol. 28, pp. 537–546.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R.T. and Rao, P.N., Mammalian cell fusion: induction of premature chromosome condensation in interphase nuclei, Nature, 1970, vol. 226, no. 5247, pp. 717–722.

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman, W.P. and Cuppen, E., Chromothripsis in congenital disorders and cancer: similarities and differences, Curr. Opin. Cell Biol., 2013, vol. 25, pp. 341–348.

    Article  PubMed  CAS  Google Scholar 

  • Liu, G., Stevens, J.B., Horne, S.D., Abdallah, B.Y., Ye, K.J., Bremer, S.W., Ye, C.J., Chen, D.J., and Heng, H.H., Genome chaos: survival strategy during crisis, Cell Cycle, 2014, vol. 13, pp. 528–537.

    Article  PubMed  CAS  Google Scholar 

  • Ly, P. and Cleveland, D.W., Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis, Trends Cell Biol., 2017, vol. 27, pp. 917–930.

    Article  PubMed  CAS  Google Scholar 

  • Ly, P., Teitz, L.S., Kim, D.H., Shoshany, O., Skaletsky, H., Fatinetti, D., Page, D.C., and Cleveland, D.W., Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining, Nat. Cell Biol., 2017, vol. 19, pp. 68–75.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R.N. and Campbell, L.J., Chromothripsis under the microscope; a cytogenetic perspectives of two cases of AML with catastrophic chromosome rearrangement, Cancer Genet., 2013, vol. 206, pp. 238–251.

    Article  PubMed  CAS  Google Scholar 

  • Mamaev, N.N., Gindina, T.L., and Boichenko, E.G., Chromothripsis in oncology: a review of literature and own observation, Klinich. Onkogematol., 2017, vol. 10, pp. 191–205.

    Google Scholar 

  • Mardin, B.R., Drainas, A.P., Waszak, S.M., Weischenfeldt, J., Isokane, M., Stütz, A.M., Raeder, B., Efthymiopoulos, T., Buccitelli, C., Segura-Wand, M., Northcott, P., Pfister, S.M., Ellenberg, J., Lichter, P., and Korbel, J.O., A cell-based model system links chromothripsis with hyperploidy, Mol. Syst. Biol., 2015, vol. 11, pp. 828–840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDermott, D., Gao, J.L., Liu, Q., Siwicki, M., Martens, C., Jacobs, P., Velez, D., Yim, E., Bryke, C.R., Hsu, N., Dai, Z., Marquesen, M.M., Stregevski, E., Kwatemaa, N., Theobald, N., Long Priel Da, Pittaluga, S., Raffeld, M.A., Calvo, K.R., Maric, I., Desmond, R., Holmes, K.L., Kuhns, D.B., Balabanian, K., Bachelerie, F., Porcella, S.F., Malech, H.L., and Murphy, P.M., Chromothripsis cure of WHIM syndrome, Cell, 2015, vol. 160, pp. 686–699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyerson, M. and Pellman, D., Cancer genomes evolve by pulverizing single chromosomes, Cell, 2011, vol. 144, pp. 9–10.

    Article  PubMed  CAS  Google Scholar 

  • Morishita, M., Muramatsu, T., Suto, Y., Hirai, M., Konishi, T., Hayashi, Sh., Shigemisu, D., Tsunoda, T., Moriyama, K., and Inazava, J., Chromotripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system, Oncotarget, 2016, vol. 7, pp. 1082–1092.

    Google Scholar 

  • Nowell, P.C., The clonal evolution of tumor cell populations, Science, 1976, vol. 194, pp. 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Pellestor, F., Gatinois, V., Puechberty, J., Genevieve, D., and Lefort, G., Chromothripsis: potential origin in gametogenesis and preimplantation cell division. A review, Fertil. Steril., 2014, vol. 102, pp. 1785–1796.

    Article  Google Scholar 

  • Poot, M., Of simple and complex genome rearrangements, chromothripsis, chromoanasynthesis, and chromosome chaos, Mol. Syndromol., 2017, vol. 8, pp. 115–117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rode, A., Maas, K., Willmund, K., Lichter, P., and Ernst, A., Chromothripsis in cancer cells: an update, Int. J. Cancer, 2015, vol. 138, pp. 2322–2333.

    Article  PubMed  CAS  Google Scholar 

  • Sargent, L.M., Sanderson, N.D., and Thorgeirsson, S.S., Ploidy and karyotypic alteration associated with early events in the development of hepatocarcinogenesis in transgenic mice harboring c-myc and transforming growth factor α transgenes, Cancer Res., 1996, vol. 56, pp. 2137–2142.

    PubMed  CAS  Google Scholar 

  • Skuija, E., Kalniete, D., Nagazawa-Miklasevica, M., Daneberga, Z., Abolins, A., Purkalne, G., and Miklasevics, E., Chromothripsis and progression-free survival in metastatic colorectal cancer, Mol. Clinic. Oncol., 2017, vol. 6, pp. 182–186.

    Article  CAS  Google Scholar 

  • Stephens, P.J., Greeman, C.D., Fu, B., Yang, F., Bignell, G.R., Mudie, L.J., Pleasans, E.D., Lau, K.W., Beare, D., Stebbings, L.A., McLaren, S., Lin, M.L., McBride, D.J., Varela, I., Nik-Zainal, S., Leroy, C., Jia, M., Menzies, A., Butler, A.P., Teague, J.W., Quali, M.A., Burton, J., Swerdlow, H., Carter, N.P., Morsberger, L.A., Iacobusio-Donahue, Ch., Follows, G.A., Green, A.R., Flanagan, A.M., Stratton, M.R., Futreal, P.A., and Campbell, P.J., Massive genome rearrangement acquired in a single catastrophic event during cancer development, Cell, 2011, vol. 144, pp. 27–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uryvaeva, I.V., A model of hepatic regeneration and carcinogenesis due to total liver cell injury induced by dipin and partial hepatectomy, Monogr. Dev. Biol., Basel: Karger, 1992, vol. 23, pp. 230–236.

    CAS  Google Scholar 

  • Uryvaeva, I.V. and Delone, G.V., The assessment of the level of genetic damages accumulated with age and induced in liver cells by the micronucleus production, Ontogenez, 1992, vol. 23, pp. 370–377.

    PubMed  CAS  Google Scholar 

  • Uryvaeva, I.V. and Delone, G.V., An improved method of liver micronucleus analysis: an application to age-related genetic alteration and polyploidy study, Mutat. Res., 1995, vol. 334, pp. 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Uryvaeva, I.V., Delone, G.V., and Marshak, T.L., Development of nuclear anomalies and cytomegalic degeneration as a result of genome lesion in hepatocytes, Dokl. Biol. Sci., 1996a, vol. 348, pp. 317–320.

    Google Scholar 

  • Uryvaeva, I.V., Marshak, T.L., and Delone, G.V., Cell cycle during survival of liver cells after potentially lethal damage of genome induced by dipin, Bull. Eksp. Biol. Med., 1996b, vol. 122, pp. 353–355.

    CAS  Google Scholar 

  • Zhang, Ch.-Zh., Spector A., Cornils H., Francis J.V., Jackson E.K., Liu, Sh., Meyerson, M., and Pellman, D., Chromotripsis from DNA damage in micronuclei, Nature, 2015, vol. 522, pp. 179–184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Uryvaeva.

Additional information

Original Russian Text © I.V. Uryvaeva, A.S. Mikaelyan, N.O. Dashenkova, T.L. Marshak, 2018, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2018, No. 5, pp. 461–468.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uryvaeva, I.V., Mikaelyan, A.S., Dashenkova, N.O. et al. Chromothripsis in Hepatocarcinogenesis: The Role of a Micronuclear Aberration and Polyploidy. Biol Bull Russ Acad Sci 45, 419–425 (2018). https://doi.org/10.1134/S1062359018050163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359018050163

Navigation