Biology Bulletin

, Volume 45, Issue 2, pp 126–131 | Cite as

Comparative Analysis of the Fatty Acid Profiles of Smolts of the Brown Trout Salmo trutta L. and Atlantic Salmon Salmo salar L. during Smoltification (Indera River, White Sea Basin)

  • Z. A. Nefedova
  • S. A. Murzina
  • S. N. Pekkoeva
  • N. N. Nemova


The fatty acid status of the total lipids was studied in smolts of the brown trout and the Atlantic salmon collected in summer in the Indera River (White Sea basin). Higher 18:3ω-3/18:2ω-6, ω-3/ω-6, and 20:4ω-6/18:2ω-6 ratios were found in smolts of the Atlantic salmon in comparison to smolts of the brown trout. A higher amount of essential fatty acid 18:2ω-6 and an increased ratio of the sum of polyunsaturated fatty acids to the sum of saturated fatty acids in smolts of brown trout were observed. We have registered the differences in the ratios of the fatty acids, including physiologically active ones, which indicated species-specific physiological and biochemical processes during smoltification.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arkhipov, A.V., Changes in the lipid metabolism in hens in ontogeny, S.-Kh. Biol., 1980, vol. 15, no. 5, pp. 756–761.Google Scholar
  2. Arts, M.T. and Kohler, C.C., Health and conditions in fish: the influence of lipids on membrane competency and immune response, in Lipids in Aquatic Ecosystems, Arts, M.T., Brett, M.T., and Kainz, M.J., Eds., Dordrecht: Springer, 2009, pp. 237–257.CrossRefGoogle Scholar
  3. Bell, J.G., Henderson, R.J., Tocher, D.R., McGhee, F., Dick, J.R., Porter, A., Smullen, R.P., and Sargent, J.R., Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism, J. Nutr., 2002, no. 132, pp. 222–230.CrossRefPubMedGoogle Scholar
  4. Björnsson, B.T., Stefansson, S.O., and McCormick, S.D., Environmental endocrinology of salmon smoltification, Gen. Comp. Endocrinol., 2011, vol. 170, pp. 290–298.CrossRefPubMedGoogle Scholar
  5. Carta, G., Angioni, E., Murru, E., Melis, M.P., Spada, S., and Banni, S., Modulation of lipid metabolism and vitamin A by conjugated linoleic acid, Prostagland. Leukot. Essent. Fatty Acids, 2002, vol. 67, pp. 187–191.CrossRefGoogle Scholar
  6. Descroix, A., Desvilettes, C., Bec, A., Martin, P., and Bourdier, G., Impact of macroinvertebrate diet on growth and fatty acid profiles of restocked 0+ Atlantic salmon (Salmo salar) parr from a large European river (the Allier), Can. J. Fish. Aquat. Sci., 2010, vol. 67, pp. 1–14.CrossRefGoogle Scholar
  7. Dosdat, A., Metailler, R., Desbruyeres, E., and Huelvan, C., Comparison of brown trout (Salmo trutta) reared in fresh water and sea water to freshwater rainbow trout (Oncorhynchus mykiss): I. Growth and nitrogen balance, Aquat. Living Res., 1997, vol. 10, pp. 157–167.CrossRefGoogle Scholar
  8. Ekologo-biokhimicheskii status molodi atlanticheskogo lososya Salmo salar L. iz nekotorykh rek basseina Belogo morya (Ecological and Biochemical Status of Atlantic Salmon Salmo salar L. Juveniles from Some Rivers of the White Sea), Nemova, N.N., Eds., Petrozavodsk: RIO KarNTs RAN, 2016.Google Scholar
  9. Folch, J., Lees, M., and Sloan-Stanley, G.H., A simple method for the isolation and purification of total lipids animal tissue (for brain, liver and muscle), J. Biol. Chem., 1957, vol. 226, pp. 497–509.Google Scholar
  10. Ivanter, E.V. and Korosov, A.V., Vvedenie v kolichestvennuyu biologiyu: ucheb. posobie (Introduction to Quantitative Biology: A Textbook), Petrozavodsk: Izd. PetrGU, 2011.Google Scholar
  11. Jutfelt, F., Olsen, R.E., Bjornsson, B.T., and Sundell, K., Parr–smolt transformation and dietary vegetable lipids affect intestinal nutrient uptake, barrier function and plasma cortisol levels in Atlantic salmon, Aquaculture, 2007, vol. 273, pp. 298–311.Google Scholar
  12. Kalyuzhin, S.M., Atlanticheskii losos’ Belogo morya: problemy vosproizvodstva i ekspluatatsii (Atlantic Salmon of the White Sea: Problems of Reproduction and Exploitation), Petrozavodsk: PetroPress, 2004.Google Scholar
  13. Kazakov, R.V. and Veselov, A.E., Patterns of smoltification of Atlantic salmon, in Atlanticheskii losos’ (Atlantic Salmon), Kazakov, R.V., Ed., St. Petersburg: Nauka, 1998.Google Scholar
  14. Lipids in Aquatic Ecosystems, Arts, M.T., Brett, M.T., and Kainz, M.J., Eds., Dordrecht: Springer, 2009.Google Scholar
  15. Makhrov, A.A., Brown trout (Salmo trutta L.) in the northeastern boundary of the range, Prints. Ekol., 2013, vol. 2, no. 1, pp. 5–20.Google Scholar
  16. Murza, I.G. and Khristoforov, O.L., Opredelenie zrelosti gonad i prognozirovanie vozrasta dostizheniya polovoi zrelosti u atlanticheskogo lososya i kumzhi (Determination of Gonad Maturity and Prediction of the Onset of Sexual Maturity in Atlantic Salmon and Brown Trout), Leningrad: GosNIORKh, FiziolNII LGU, 1991.Google Scholar
  17. Murza, I.G. and Khristoforov, O.L., Geographical features of the structure of the brown trout (Salmo trutta L.) populations and some conservation measures for this species, in Mater. konfer. “Bioraznoobrazie Evropeiskogo Severa”, Petrozavodsk, 3–7 sen. 2001 g. (Proc. Conf. “Biodiversity of the European North,” Petrozavodsk, September 3–7, 2001), Petrozavodsk, 2001, pp. 119–120.Google Scholar
  18. Nefedova, Z.A., Murzina, S.A., Veselov, A.E., Pekkoeva, S.N., Ruokolainen, T.R., Ruch’ev, M.A., and Nemova, N.N., The biochemical variability of the lipid status of juveniles of the brown trout Salmo trutta L. inhabiting rivers belonging to the watershed area of the White Sea, Biol. Bull. (Moscow), 2017, vol. 44, no. 1, pp. 50–54.CrossRefGoogle Scholar
  19. Nemova, N.N., Nefedova, Z.A., Murzina, S.A., Veselov, A.E., Ripatti, P.O., and Pavlov, D.S., The effect of environmental conditions on the dynamics of fatty acids in juveniles of the Atlantic salmon (Salmo salar L.), Russ. J. Ecol., 2015, vol. 46, no. 3, pp. 267–271.CrossRefGoogle Scholar
  20. Novikov, G.G., Rost i energetika razvitiya kostistykh ryb v rannem ontogeneze (Growth and Energetics of Development of Teleost Fishes in the Early Ontogeny), Moscow: Editorial URSS, 2000.Google Scholar
  21. Olsvi, P.A., Kristensen, T., Waagbo, R., Rosseland, B.O., Tollefsen, K.E., Baeverfjord, G., and Berntssen, M.H., mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2005, no. 3, pp. 314–323.CrossRefGoogle Scholar
  22. Pavlov, D.S., Savvaitova, K.A., Kuzishchin, K.V., Gruzdeva, M.A., Pavlov, S.D., Mednikov, B.M., and Maksimov, S.V., Tikhookeanskie blagorodnye lososi i foreli Azii (Pacific Noble Salmon and Trout of Asia), Moscow: Nauch. mir, 2001.Google Scholar
  23. Pavlov, D.S., Lupandin, A.I., and Kostin, V.V., Mekhanizmy pokatnoi migratsii molodi rechnykh ryb (Mechanisms of Downstream Migration of Juvenile Freshwater Fishes), Moscow: Nauka, 2007.Google Scholar
  24. Pavlov, D.S., Nefedova, Z.A., Veselov, A.E., Nemova, N.N., Ruokolainen, T.R., Vasil’eva, O.B., and Ripatti, P.O., Age dynamics of lipid status of juveniles of Atlantic salmon (Salmo salar L.) from the Varzuga River, J. Appl. Ichtiol., 2009, vol. 49, no. 11, pp. 1073–1080.Google Scholar
  25. Peng, J.Y., Larondelle, Y., Pham, D., Ackman, R.G., and Rollin, X., Polyunsaturated fatty acid profiles of whole body phospholipids and triacylglicerols in anadromous and landlocked Atlantic salmon (Salmo salar) fry, Comp. Biochem. Physiol., 2003, vol. 134, pp. 335–348.CrossRefGoogle Scholar
  26. Reiser, R., Stevenson, B., Kayama, M., Choudhury, R.B.R., and Hood, D.W., The influence of dietary fatty acids and environmental temperature on the fatty acid composition of teleost fish, J. Am. Oil Chem. Soc., 1963, vol. 40, pp. 507–513.CrossRefGoogle Scholar
  27. Rollin, X., Peng, J., Pham, D., Ackman, R.G., and Larondelle, Y., The effects of dietary lipid and strain difference on polyunsaturated fatty acid composition and conversion in anadromous and landlocked salmon, Comp. Biochem. Physiol. Pt B, 2003, vol. 134, pp. 349–366.CrossRefGoogle Scholar
  28. Ruch’ev, M.A., Efremov, D.A., Skorobogatov, M.I., Veselov, A.E., and Pavlov, D.S., A comparative study of locomotor indices of rheoreaction of juvenile Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) [unpubl.]Google Scholar
  29. Shustov, Yu.A., Ekologicheskie aspekty povedeniya molodi lososevykh ryb v rechnykh usloviyakh (Environmental Aspects of Behavior of Juvenile Salmonids Under River Conditions), St. Petersburg: Nauka, 1995.Google Scholar
  30. Shustov, Yu.A., Baryshev, I.A., and Belyakova, E.I., Specific features of the feeding of juvenile Atlantic salmon (Salmo salar L.) in the Subarctic Varzuga River and its small tributaries (Kola Peninsula), Inland Water Biol., 2012, vol. 5, no. 3, pp. 288–292.CrossRefGoogle Scholar
  31. Stefansson, S.O., Björnsson, B.T., Ebbesson, L.O.E., and McCormick, S.D., Smoltification, in Fish Larval Physiology, Finn, R.N. and Kapoon, B.G., Eds., Enfield: Sci. Publ., 2008, pp. 639–681.Google Scholar
  32. Sundell, K.S. and Sundh, H., Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins, Front. Physiol., 2012, vol. 3, p. 388. doi 10.3389/fphys.2012.00388CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tipsmark, C.K., Sorensen, K.J., and Madsen, S.S., Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation, J. Exp. Biol., 2010, vol. 213, pp. 368–379.CrossRefPubMedGoogle Scholar
  34. Tocher, D.R., Bell, J.G., Dick, J.R., Henderson, R.J., McGhee, F., Michell, D., and Morris, P.C., Polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr–smolt transformation and the effects of dietary linseed and rapeseed oils, Fish Physiol. Biochem., 2000, vol. 23, no. 1, pp. 59–73.CrossRefGoogle Scholar
  35. Tocher, D.R., Metabolism and functions of lipids and fatty acids in teleost fish, Rew. Fish. Sci., 2003, vol. 11, no. 2, pp. 107–184.CrossRefGoogle Scholar
  36. Tsyganov, E.P., Direct methylation of lipids after TLC method without elution from silica gel, Lab. Delo, 1971, no. 8, pp. 490–493.PubMedGoogle Scholar
  37. Veselov, A.E. and Kalyuzhin, S.M., Ekologiya, povedenie i raspredelenie molodi atlanticheskogo lososya (Ecology, Behavior, and Distribution of Juvenile Atlantic Salmon), Petrozavodsk: Kareliya, 2001.Google Scholar
  38. Voronin, V.P., Murzina, S.A., and Pekkoeva, S.N., Fatty acid composition of macrozoobenthic food objects of juvenile salmonids in rivers of the European North, in Mater. dokl. XXIII Vseros. molod. nauch. konf. (s elementami nauch. shkoly) “Aktual’nye problemy biologii i ekologii” (4–8 aprelya 2016 goda, g. Syktyvkar) (Proc. XXIII Youth Sci. Conf. (with elements of Scientific School) “Actual Problems of Biology and Ecology” (April 4–8, 2016, Syktyvkar)), Syktyvkar, 2016, pp. 57–59.Google Scholar
  39. Wedemeyer, G.A., Saunders, R.L., and Clarke, W.C., Environmental factors affecting smoltification and early marine survival of anadromous salmonids, Fish. Mar. Rev., 1980, vol. 42, pp. 1–14.Google Scholar
  40. Yanes-Roca, C., Rhody, N., Nystrom, M., and Main, K.L., Effects of fatty acid composition and spawning season patterns on egg quality and larval survival in common snook (Centropomus undecimalis), Aquaculture, 2009, no. 287, pp. 335–340.CrossRefGoogle Scholar
  41. Youdim, K.A., Martin, A., and Joseph, J.A., Essential fatty acids and the brain: possible health implications, J. Dev. Neurosci., 2000, vol. 18, pp. 383–399.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Z. A. Nefedova
    • 1
  • S. A. Murzina
    • 1
  • S. N. Pekkoeva
    • 1
  • N. N. Nemova
    • 1
  1. 1.Institute of Biology, Karelian Science CenterRussian Academy of SciencesPetrozavodsk, KareliaRussia

Personalised recommendations