Biology Bulletin

, Volume 45, Issue 2, pp 132–138 | Cite as

Secondary Metabolites of Micromycetes in Plants of the Family Fabaceae, Genus Trifolium

Biochemistry
  • 2 Downloads

Abstract

The component composition and content of mycotoxins in perennial grasses of five species of the genus Trifolium, selected from natural biocenoses in different periods of vegetation, were studied. In the terrestrial parts of plants, the permanent presence of alternariol, cyclopiazonic acid, and emodin was shown. It was noted that differences in contamination are most clearly expressed in meadow clover Trifolium pratense L. and white clover Trifolium repens L., while alsike clover Trifolium hybridum L. occupies an intermediate position. It was found that zigzag clover Trifolium medium L. and mountain clover Trifolium montanum L., morphologically close to meadow clover, practically did not differ in the composition of toxic metabolites. The ways of formation of metabolic equilibrium in plants with participation of microscopic fungi are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, A.E., Miadlikowska, J., Higgins, K.L., Sarvate, S.D., Gugger, P., Way, A., Hofstetter, V., Kauff, F., and Lutzoni, F., A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification?, System. Biol., 2009, vol. 58, pp. 283–297.CrossRefGoogle Scholar
  2. Bacon, C., Porter, J., Robbins, J., and Luttrell, E., Epichloe typhina from toxic tall fescue grasses, Appl. Environ. Microbiol., 1977, vol. 34, pp. 576–581.PubMedPubMedCentralGoogle Scholar
  3. Burkin, A.A. and Kononenko, G.P., Peculiarities of mycotoxin accumulation in lichens, Appl. Biochem. Microbiol., 2013, vol. 49, no. 5, pp. 521–528.CrossRefGoogle Scholar
  4. Burkin, A.A. and Kononenko, G.P., Metabolites of toxigenic fungi in lichens of the genera Parmelia, Melanohalea, Arctoparmelia, Melanelia, and Hypogymnia, Mikol. Fitopatol., 2014a, vol. 48, no. 1, pp. 43–48.Google Scholar
  5. Burkin, A.A. and Kononenko, G.P., Secondary fungal metabolites (mycotoxins) in lichens of different taxonomic groups, Biol. Bull. (Moscow), 2014b, vol. 41, no. 3, pp. 216–222.CrossRefGoogle Scholar
  6. Burkin, A.A. and Kononenko, G.P., Mycotoxin contamination of meadow grasses in the European part of Russia, S.-Kh. Biol., 2015a, vol. 50, no. 4, pp. 503–512.Google Scholar
  7. Burkin, A.A. and Kononenko, G.P., Metabolites of toxigenic fungi in lichens of genera Nephroma, Peltigera, Umbilicaria, and Xanthoria, Biol. Bull. (Moscow), 2015b, vol. 42, no. 6, pp. 486–492.CrossRefGoogle Scholar
  8. Cook, D., Gardner, D.R., Pfister, J.A., and Grum, D., Biosynthesis of natural products in plants by fungal endophytes with an emphasis on swainsonine, in Phytochem.- Biosynth., Function Appl., Recent Adv. Phytochem. 44, Jetter, R., Ed., Switzerland: Springer Int. Publ., 2014, pp. 23–32.Google Scholar
  9. Fletcher, L.R. and Harvey, I.C., An association of a Lolium endophyte with ryegrass staggers, N. Z. Vet. J., 1981, vol. 29, pp. 185–186.CrossRefPubMedGoogle Scholar
  10. Gallo, A., Giuberti, G., Frisvad, J.C., Bertuzzi, T., and Nielsen, K.F., Review on mycotoxin issues in ruminants: occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects, Toxins, 2015, vol. 7, pp. 3057–3111.PubMedGoogle Scholar
  11. Golovkin, B.N., Rudenskaya, R.N., Trofimova, I.A., and Shreter, A.I., Biologicheski aktivnye veshchestva rastitel’nogo proiskhozhdeniya (Biologically Active Substances of Plant Origin), Moscow: Nauka, 2001.Google Scholar
  12. Gubanov, I.A., Kiseleva, K.V., Novikov, V.S., and Tikhomirov, V.N., Illyustrirovannyi opredelitel’ rastenii Srednei Rossii (An Illustrated Identification Guide to Plants of Central Russia), Moscow: KMK, 2003, vol. 2.Google Scholar
  13. Kononenko, G.P. and Burkin, A.A., The development and current state of analytical studies of mycotoxins, Lab. Zh., 2002, vol. 1, no. 1, pp. 50–55.Google Scholar
  14. Kononenko, G.P., Burkin, A.A., Gavrilova, O.P., and Gagkaeva, T.Yu., Fungal species and multiple mycotoxin contamination of cultivated grasses and legumes crops, Agricult. Food Sci., 2015, vol. 24, pp. 323–330.Google Scholar
  15. Kour, A., Shawl, A.S., Fehman, S., Sultan, P., Qazi, P.H., Suden, P., Khajuria, R.K., and Venna, V., Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva, J. Microbiol. Biotechnol., 2008, vol. 24, pp. 1115–1121.CrossRefGoogle Scholar
  16. Kusari, S. and Spiteller, M., Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities, in Metabolomics, Roessner, U., Ed., London: InTech, 2012, pp. 241–266.Google Scholar
  17. Kusari, S., Lamshöft, M., Zühlke, S., and Spiteller, M., An endophytic fungus from Hypericum perforatum that produces hypericin, J. Nat. Prod., 2008, vol. 71, pp. 159–162.CrossRefPubMedGoogle Scholar
  18. Kusari, S., Lamshöft, M., and Spiteller, M., Aspergillus fumigatus Fresenius, an endophytic fungus from Jumperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin, J. Appl. Microbiol., 2009a, vol. 107, pp. 1019–1030.CrossRefPubMedGoogle Scholar
  19. Kusari, S., Zühlke, S., Košuth, J., Cellárová, E., and Spiteller, M., Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis, J. Nat. Prod., 2009b, vol. 72, pp. 1825–1835.CrossRefPubMedGoogle Scholar
  20. Kusari, S., Zühlke, S., and Spiteller, M., Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis, J. Nat. Prod., 2011, vol. 74, pp. 764–775.CrossRefPubMedGoogle Scholar
  21. Laatsch, H., Antibase 2014. The Natural Compounds Identifier, Weinheim: Wiley-VCH, 2014.Google Scholar
  22. Li, W.C., Zhou, J., Guo, S.Y., and Guo, L.D., Endophytic fungi associated with lichens in Baihua mountain of Beijing, China, Fungal Div., 2007, vol. 25, pp. 69–80.Google Scholar
  23. Popravko, S.A., Kononenko, G.P., and Sokolova, S.A., Biosynthesis and transformation of pterocarpans and isoflavans during interaction of legumes of the tribe Trifolieae with parasitic fungi (a review), Prikl. Biokhim. Mikrobiol., 1984, vol. 20, no. 6, pp. 723–732.Google Scholar
  24. Popravko, S.A., Kononenko, G.P., and Sokolova, S.A., Mechanism of induced synthesis of isoflavonoids and cumestans from legumes of the tribe Trifolieae (a review), Prikl. Biokhim. Mikrobiol., 1987, vol. 23, no. 2, pp. 147–157.Google Scholar
  25. Prell, H.H. and Day, P.R., Plant–Fungal Pathogen Interaction. A Classical and Molecular View, Berlin: Springer-Verlag, 2001.Google Scholar
  26. Rodriguez, R.J., White, J.F.J., Arnold, A.E., and Redman, R.S., Fungal endophytes: diversity and functional roles, New Phytol., 2009, vol. 182, pp. 314–330.CrossRefPubMedGoogle Scholar
  27. Skvortsov, V.E., Illyustrirovannoe rukovodstvo dlya botanicheskikh praktik i ekskursii v Srednei Rossii (Illustrated Guide for Botanical Practice and Excursions in Central Russia), Moscow: KMK, 2004.Google Scholar
  28. Sun, H.J., Depriest, P.T., Gargas, A., Rossman, A.Y., and Friedmann, E.I., Pestalotiopsis maculans: a dominant parasymbiont in North American lichens, Symbiosis, 2002, vol. 33, pp. 215–226.Google Scholar
  29. U’Ren, J.M., Lutzoni, F., Miadlikowska, J., and Arnold, A.E., Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens, Microb. Ecol., 2010, vol. 60, pp. 340–353.CrossRefPubMedGoogle Scholar
  30. Weidenbörner, M., Encyclopedia of Food Mycotoxins, Berlin: Springer, 2001.CrossRefGoogle Scholar
  31. Zhang, H.W., Song, Y.C., and Tan, R.X., Biology and chemistry of endophytes, Nat. Prod. Rep., 2006, vol. 23, pp. 753–771.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.All-Russia Research Institute for Veterinary Sanitation, Hygiene, and EcologyMoscowRussia

Personalised recommendations