Advertisement

Biology Bulletin

, Volume 45, Issue 1, pp 1–10 | Cite as

Energetic Macroevolution of Invertebrates

  • A. A. Zotin
Theoretical and Evolutionary Biology

Abstract

An analysis of research data and published data on comparable standard metabolism in invertebrates is carried out. It is shown that this parameter varies insignificantly within each family and most orders. The mean values of the comparable standard metabolism for orders are grouped around certain values. It is assumed that these values correspond to stationary states, which organisms seek to reach during the evolutionary process. A total of nine levels of stationary states have been identified. The ratio of the values of comparable standard metabolism for neighboring levels is approximately 2.25. The orders occupy ever higher stationary levels in the process of macroevolution of phyla and classes. A possible mechanism for the transition from one stationary level to another is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseeva, T.A., Standard metabolism in crustaceans, Biol. Bull. (Moscow), 1999, vol. 26, no. 2, pp. 196–204.Google Scholar
  2. Alekseeva, T.A. and Zotin, A.I., Energy metabolism in insects: Orthoptera, Odonata, and Coleoptera, Izv. Akad. Nauk, Ser. Biol., 1995, no. 3, pp. 316–326.Google Scholar
  3. Alekseeva, T.A. and Zotin, A.I., Standard metabolism of insects: Hemiptera, Lepidoptera, and Hymenoptera, Biol. Bull. (Moscow), 1996, vol. 23, no. 2, pp. 157–168.Google Scholar
  4. Alekseeva, T.A., Zotin, A.I., Yasyukevich, V.V., and Sidorova, N.V., Oxygen consumption by adults forms of Diptera, Izv. Akad. Nauk, Ser. Biol., 1993, no. 3, pp. 426–435.Google Scholar
  5. Alekseeva, T.A., Zotin, A.I., and Dontsova, G.V., Oxygen consumption by adult cockroaches (Blattodea: Insecta), Biol. Bull. (Moscow), 1998, vol. 25, no. 5, pp. 520–524.Google Scholar
  6. Animal Diversity Web (ADW) Scyphozoa, 2016. http://animaldiversity.org/accounts/Scyphozoa/classification/. BOLD: The Barcode of Life Data System. 2016. http://www.boldsystems.org.Google Scholar
  7. Byzova, Yu.B., Respiration of soil invertebrates, in Ekologiya pochvennykh bespozvonochnykh (Ecology of Soil Invertebrates), Moscow: Nauka, 1972, pp. 3–39.Google Scholar
  8. Caramujo, M.J., Clase Maxillopoda: Subclase Copepoda: Orden Harpacticoida, Revista IDE-SEA, Lisboa: Sociedade Entomologica Aragonesa, 2015, pp. 1–12.Google Scholar
  9. Clarke, M.R. and Trueman, E.R., Paleontology and Neontology of Cephalopods, vol. 12: The Mollusca, San Diego: Acad. Press, 2013.Google Scholar
  10. Corliss, J.O., Hypotrichida, 2012. www.accessscience.com/content/hypotrichida/334700.Google Scholar
  11. Dol’nik, V.R., Energy metabolism and evolution of animals, Usp. Sovrem. Biol., 1968, vol. 66, no. 5, pp. 276–293.PubMedGoogle Scholar
  12. Dunthorn, M., Lipps, J.H., Dolan, J.R., Abboud-Abi Saab, M., Aescht, E., Bachy, C., Sonia, Barría de Cao, M., Berger, H., Bourland, W.A., Choi, J.Ki., Clamp, J., Doherty, M., Gao, F., Gentekaki, E., Gong, J., Hu, X., Huang, J., Kamiyama, T., Johnson, M.D., Kammerlander, B., Kim, S.Y., Kim, Y.-O., la Terza, A., Laval-Peuto, M., Lipscomb, D., Lobban, C.S., Long, H., Luporini, P., Lynn, D.H., Macek, M., Mansergh, R.I., Martín-Cereceda, M., McManus, G.G., Montagnes, D.J.S., Ong’ondo, G.O., Patterson, D.J., Pérez-Uz, B., Quintela-Alonso, P., Safi, L.S.L., Santoferrara, L.F., Sonntag, B., Song, W., Stoeck, T., Stoecker, D.K., Strüder-Kypke, M.C., Trautmann, I., Utz, L.R.P., Vallesi, A., Vdáčný, P., Warren, A., Weisse, T., Wickham, S.A., Yi, Z., Zhang, W., Zhan, Z., Zufall, R., and Agatha, S., Ciliates—protists with complex morphologies and ambiguous early fossil record, Marine Micropaleontol., 2015, vol. 119, pp. 1–6.CrossRefGoogle Scholar
  13. Durden, C.J., Gnathostomulida: is there a fossil record?, Science, 1969, vol. 164, no. 3881, pp. 855–856.CrossRefPubMedGoogle Scholar
  14. Ehnes, R.B., Allometry—relations to energy and abundance, Dissertation von Dipl. Biol. Roswitha, Darmstadt: Techn. Univ. Darmstadt, 2014.Google Scholar
  15. Fuchs, D., Bracchi, G., and Weis, R., New octopods (Cephalopoda: Coleoidea) from the late Cretaceous (Upper Cenomanian) of HâKel and HâDjoula, Lebanon, Palaeontol., 2009, vol. 52, pp. 65–81.CrossRefGoogle Scholar
  16. Hołyńska, M., Leggitt, L., and Kotov, A.A., Miocene cyclopid copepod from a saline paleolake in Mojave, California, Acta Palaeontol. Polon., 2016, vol. 61, no. 2, pp. 345–361.Google Scholar
  17. Ivanter, E.V. and Korosov, A.V., Elementarnaya biometriya (Elementary Biometrics), Petrozavodsk: Izd. PetrGU, 2010.Google Scholar
  18. Ivlev, V.S., Experience in assessing the evolutionary significance of the levels of energy metabolism, Zh. Obshch. Biol., 1959, vol. 20, no. 6, pp. 94–103.Google Scholar
  19. Krings, M., Grewing, A., Taylor, T.N., Kerp, H., and Galtier, J., Lageniastrum macrosporae (Volvocales fossiles, Lageniastraceae nov. fam.), un endophyte de mégaspores du Carbonifère du Massif Central français, Geobios, 2005, vol. 38, no. 4, pp. 451–465.CrossRefGoogle Scholar
  20. Liu, X., Wang, Y., Shih, C., Ren, D., and Yang, D., Early evolution and historical biogeography of fishflies (Megaloptera: Chauliodinae): implications from a phylogeny combining fossil and extant taxa, PLoS One, 2012, vol. 7, no. 7. http://dx.doi.org/doi 10.1371/journal.pone.0040345.Google Scholar
  21. Malek-Mansour, M., Nicolis, G., and Prigogine, I., Nonequilibrium phase transitions in chemical systems, in Termodinamika i kinetika biologicheskikh protsessov (Thermodynamics and Kinetics of Biological Processes), Moscow: Nauka, 1980, pp. 59–83.Google Scholar
  22. Orchard, M.J., Lower Triassic conodonts from the Canadian Arctic, their intercalibration with ammonoid-based stages and a comparison with other North American Olenekian faunas, Polar Res., 2008, vol. 27, pp. 393–412.CrossRefGoogle Scholar
  23. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. Handbook for Paleontologists and Geologists of the USSR), vol. 6: Mollyuski–golovonogie. II: Ammonoidei (tseratity, ammonity), vnutrirakovinnye. Prilozhenie—konikonkhii (Mollusks: Cephalopoda. II. Ammonoidea (Ceratites, Ammonites), Orlov, Yu.A., Ed., Moscow: Gos. Nauch.-Tekhn. Izd. Lit. po Geologii i Okhrane Nedr, 1958.Google Scholar
  24. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. Handbook for Paleontologists and Geologists of the USSR), vol. 1: Obshchaya chast’, prosteishie (General Part, Protozoa), Orlov, Yu.A., Ed., Moscow: Izd. AN SSSR, 1959.Google Scholar
  25. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. Handbook for Paleontologists and Geologists of the USSR), vol. 3: Mollyuski–pantsirnye, dvustvorchatye, lopatonogie (Mollusks: Polyplacophora, Bivalvia, and Scaphopoda), Orlov, Yu.A., Ed., Moscow: Izd. AN SSSR, 1960a.Google Scholar
  26. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. Handbook for Paleontologists and Geologists of the USSR), vol. 4: Mollyuski–bryukhonogie (Mollusks: Gastropoda), Orlov, Yu.A., Ed., Moscow: Gos. Nauch.-Tekhn. Izd. Lit. po Geologii i Okhrane Nedr, 1960b.Google Scholar
  27. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. Handbook for Paleontologists and Geologists of the USSR), vol. 8: Chlenistonogie–trilobitoobraznye i rakoobraznye (Arthropoda: Trilobitomorpha and Crustacea), Orlov, Yu.A., Ed., Moscow: Gos. Nauch.-Tekhn. Izd. Lit. po Geologii i Okhrane Nedr, 1960c.Google Scholar
  28. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. Handbook for Paleontologists and Geologists of the USSR), vol. 2: Gubki, arkheotsiaty, kishechnopolostnye, chervi (Porifera, Archaeocyatha, Coelenterata, and Vermes), Orlov, Yu.A., Ed., Moscow: Izd. AN SSSR, 1962a.Google Scholar
  29. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. Handbook for Paleontologists and Geologists of the USSR), vol. 5: Mollyuski–golovonogie. I: nautiloidei, baktritoidei, ammonoidei (agoniatity, goniatity, klimenii) (Mollusks: Cephalopoda. I. Nautiloidea, Bactritoidea, and Ammonoidea (Agoniatites, Goniatites, and Climenias)), Orlov, Yu.A., Ed., Moscow: Izd. AN SSSR, 1962b.Google Scholar
  30. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. Handbook for Paleontologists and Geologists of the USSR), vol. 9: Chlenistonogie–trakheinye i khelitserovye (Arthropoda: Tracheata and Chelicerata), Orlov, Yu.A., Ed., Moscow: Izd. AN SSSR, 1962c.Google Scholar
  31. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. Handbook for Paleontologists and Geologists of the USSR), vol. 10: Iglokozhie, gemikhordovye (Echinodermata and Hemichordata), Orlov, Yu.A., Ed., Moscow: Nedra, 1964.Google Scholar
  32. Paleobiology Database, Fossilworks, 2016. http://fossilworks.org.Google Scholar
  33. Prigogine, I., Exploring complexity, Eur. J. Operational Res., 1987, vol. 30, no. 2, pp. 97–103.CrossRefGoogle Scholar
  34. Prigogine, I. and Nicolis, G., Biological order, structure and instabilities, Quart. Rev. Biophys., 1971, vol. 4, nos. 2/3, pp. 107–148.CrossRefGoogle Scholar
  35. Schram, F.R., Hof, C.H.J., Mapes, R.H., and Snowdon, P., Paleozoic cumaceans (Crustacea, Malacostraca, Peracarida) from North America, Contribut. Zool., 2003, vol. 72, no. 1, pp. 1–16.Google Scholar
  36. Schulze, A., Sipuncula, in Grzimek’s Animal Life Encyclopedia, Grzimek, B., Kleiman, D.G., Geist, V., and McDade, M.C., Eds., Detroit: Thomson-Gale, 2004, pp. 25–29.Google Scholar
  37. Severtsov, A.S., Napravlennost’ evolyutsii (The Direction of Evolution), Moscow: Izd. MGU, 1990.Google Scholar
  38. Shapiro, S.S. and Wilk, M.B., An analysis of variance test for normality, Biometrika, 1965, vol. 52, no. 3, pp. 591–611.CrossRefGoogle Scholar
  39. Schmalhausen, I.I., Problemy darvinizma (Problems of Darwinism), Leningrad: Nauka, 1969.Google Scholar
  40. The Global Biodiversity Information Facility (GBIF), 2016}. http://www.gbif.orgGoogle Scholar
  41. Vladimirova, I.G., Standard metabolic rate in Gastropoda class, Biol. Bull. (Moscow), 2001, vol. 28, no. 2, pp. 163–169.CrossRefGoogle Scholar
  42. Vladimirova, I.G. and Zotin, A.I., The dependence of the respiration rate of Protozoa on temperature and body weight, Zh. Obshch. Biol., 1985, vol. 46, no. 2, pp. 165–173.Google Scholar
  43. WoRMS Editorial Board. World Register of Marine Species, 2016. http://www.marinespecies.org.Google Scholar
  44. Xiao, S. and Kaufman, A.J., Neoproterozoic Geobiology and Paleobiology, Dordrecht: Springer Sci. Business Media, 2007.Google Scholar
  45. Zotin, A.I., Bioenergetic directionality of evolutionary progress of organisms, in Termodinamika i regulyatsiya biologicheskikh protsessov (Thermodynamics and Regulation of Biological Processes), Moscow: Nauka, 1984, pp. 269–274.Google Scholar
  46. Zotin, A.A., Statistical estimation of allometric coefficients, Biol. Bull. (Moscow), 2000, vol. 27, no. 5, pp. 431–437.Google Scholar
  47. Zotin, A.I. and Zotin, A.A., Progressive evolution: thermodynamic basis, Izv. Akad. Nauk, Ser. Biol., 1995, no. 4, pp. 389–397.Google Scholar
  48. Zotin, A.I. and Zotin, A.A., Napravlenie, skorost’ i mekhanizmy progressivnoi evolyutsii (termodinamicheskie osnovy biologicheskoi evolyutsii) (Direction, Rate, and Mechanisms of Progressive Evolution (Thermodynamic Basics of Biological Evolution)), Moscow: Nauka, 1999.Google Scholar
  49. Zotin, A.I. and Zotin, A.A., Data on Oxygen Consumption: Cnidaria, 2016a. www.researchgate.net/publication/311617690_Data_on_oxygen_consumption_Cnidaria.Google Scholar
  50. Zotin, A.I. and Zotin, A.A., Data on Oxygen Consumption: Worms, 2016b. www.researchgate.net/publication/311676056_Data_on_oxygen_consumption_Worms.Google Scholar
  51. Zotin, A.I. and Zotin, A.A., Data on Oxygen Consumption: Cnidaria, Chaetognatha, Echinodermata, Tunicata, 2016c. www.researchgate.net/publication/311714290_Data_on_oxygen_consumption_Cnidaria_Chaetognatha_Echinodermata_ Tunicata.Google Scholar
  52. Zotin, A.A., Alekseeva, T.A., and Zotin, A.I., Standard Metabolism in the Class Arachnida, Biol. Bull. (Moscow), 1998a, vol. 1998, no. 25, pp. 6–564.Google Scholar
  53. Zotin, A.A., Lamprecht, I., and Zotin, A.I., Heat barriers in progressive evolution of animals and humans, Biol. Bull. (Moscow), 1998b, vol. 1998, no. 25, pp. 3–309.Google Scholar
  54. Zotin, A.A., Lamprecht, I., and Zotin, A.I., Bioenergetic progress and heat barriers, J. Non-Equilib. Thermodyn., 2001, vol. 26, pp. 191–202.CrossRefGoogle Scholar
  55. Zotin, A.I., Alekseeva, T.A., and Zotin, A.A., Data on Oxygen Consumption: Crustacea, 2016a. www.researchgate. net/publication/311680263_Data_on_oxygen_consumption_Crustacia.Google Scholar
  56. Zotin, A.I., Alekseeva, T.A., and Zotin, A.A., Data on Oxygen Consumption: Arachnida, 2016b. www.researchgate. net/publication/311706950_Data_on_oxygen_consumption_Arachnida.Google Scholar
  57. Zotin, A.I., Vladimirova, I.G., and Zotin, A.A., Data on Oxygen Consumption: Protozoa, 2016c. www.researchgate. net/publication/311617002_Data_on_oxygen_consumption_Protozoa.Google Scholar
  58. Zotin, A.I., Alekseeva, T.A., and Zotin, A.A., Data on Oxygen Consumption: Collembola, Insecta, Diplopoda, 2017a. www.researchgate.net/publication/312249587_Data_on_oxygen_consumption_Collembola_Insecta_Diplopoda.Google Scholar
  59. Zotin, A.I., Vladimirova, I.G., and Zotin, A.A., Data on Oxygen Consumption: Mollusca, 2017b. www.researchgate.net/publication/312233086_Data_on_oxygen_consumption_Mollusca.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Koltzov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations