Biology Bulletin

, Volume 45, Issue 2, pp 192–200 | Cite as

Amphibian Anomalies as a Source of Information on the Adaptive and Evolutionary Potential

  • V. L. Vershinin
  • S. D. Vershinina
  • N. S. Neustroeva
Ecology
  • 4 Downloads

Abstract

Long-term data on the morphological anomalies of four anuran species (family Ranidae) and two tailed amphibian species (families Hynobiidae and Salamandridae), inhabiting forest and urbanized areas in the eastern slope of the Middle Urals, have been studied. The morphological deviations of amphibians were investigated in terms of the module principle, which predetermines the similarity of evolutionary transformations in different taxa and limit the number of possible directions of diversification in morphogenesis. The definitive spectra and frequencies of morphological anomalies in juvenile and adult individuals are compared in the urbanization gradient. Original methodological and methodical approaches to using the potential and implemented spectra of deviation are proposed for assessing the role of the ecological component in their formation. The possibility of using deviant forms of variability for assessing the evolutionary and adaptive potentials of the species is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberch, P., Convergence and parallelism in foot morphology in the neotropical salamander genus Bolitoglossa. 1. Function, Evolution, 1981, vol. 35, no. 1, pp. 84–100.PubMedGoogle Scholar
  2. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Zhivotovskii, L.A., Ed., Moscow: Akademkniga, 2003.Google Scholar
  3. Andrzejewski, R., Babinska-Werka, J., Gliwicz, J., and Goszczynski, J., Synurbization processes in population of Apodemus agrarius. I. Characteristics of populations in an urbanization gradient, Acta Theriol., 1978, vol. 23, pp. 341–358.CrossRefGoogle Scholar
  4. Dawson, A.B., A note on the staining of the skeleton of cleared specimens with alizarin red S, Stain. Technol., 1926, vol. 1, pp. 123–125.CrossRefGoogle Scholar
  5. Dubois, A., Anomalies and mutations in natural populations of the Rana “esculenta” complex (Amphibia, Anura), Mitt. Zool. Mus. Berlin, 1979, vol. 55, no. 1, pp. 59–87.Google Scholar
  6. Ferrier, D.E. and Holland, P.W., Ancient origin of the Hox gene cluster, Nat. Rev. Genet., 2001, vol. 2, pp. 33–38.CrossRefPubMedGoogle Scholar
  7. Gershenzon, S.M., Genetic polymorphism in animal populations and its evolutionary role, Zh. Obshch. Biol., 1974, vol. 35, no. 5, pp. 678–684.PubMedGoogle Scholar
  8. Gershenzon, S.M., Microevolution, polymorphism, and dominant mutations, Priroda (Moscow, Russ. Fed.), 1985, no. 4, pp. 80–89.Google Scholar
  9. Hurlbert, S.H., The measurement of niche overlap and some relatives, Ecology, 1978, vol. 59, no. 1, pp. 67–77.CrossRefGoogle Scholar
  10. Inge-Vechtomov, S.G., Variability, matrix principle, and the theory of evolution, in Charl’z Darvin i sovremennaya biologiya. Tr. Mezhdunar. nauch. konf. “Charl’z Darvin i sovremennaya biologiya” (21–23 sentyabrya 2009 g., Sankt-Peterburg) (Charles Darwin and Modern Biology: Proc. Intern. Sci. Conf. “Charles Darwin and Modern Biology” (September 21–23, 2009, St. Petersburg)), St. Petersburg, 2010, pp. 49–60.Google Scholar
  11. Jacob, F., Evolution and tinkering, Science, 1977, vol. 196, pp. 1161–1166.CrossRefPubMedGoogle Scholar
  12. Kawakami, Y., Esteban, C.R., Raya, M., Kawakami, H., Martí, M., Dubova, I., and Belmonte, J.C.I., Wnt/betacatenin signaling regulates vertebrate limb regeneration, Genes Develop., 2006, vol. 20, pp. 3232–3237.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Kondo, S. and Miura, T., Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 2010, vol. 329, pp. 1616–1620.CrossRefPubMedGoogle Scholar
  14. Kovalenko, E.E., Trait norm effect and its theoretical value, in Evolyutsionnaya biologiya: istoriya i teoriya (Evolutionary Biology: History and Theory), St. Petersburg: Politekhnika-servis, 2003, vol. 2, pp. 66–87.Google Scholar
  15. Neustroeva, N.S. and Vershinin, V.L., Skeletal deviations in anuran underyearlings under urbanization conditions, Vestn. Orenburg. Gos. Univ., 2011, no. 4, pp. 85–90.Google Scholar
  16. Neustroeva, N.S., Morphological variability of the skeleton of representatives of the genus Rana under conditions of anthropogenic destabilization of the environment, in Extended Abstract of Cand. Sci. (Biol.) Dissertation, Yekaterinburg: Inst. Ekonomiki UrO RAN, 2012.Google Scholar
  17. Oster, G.F., Shubin, N., Murray, J.D., and Alberch, P., Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny, Evolution, 1988, vol. 42, no. 5, pp. 862–884.CrossRefPubMedGoogle Scholar
  18. Rozanov, A.Yu., Zakonomernosti morfologicheskoi evolyutsii arkheotsiat i voprosy yarusnogo raschleneniya nizhnego kembriya (Laws of Morphological Evolution of Archaeocyatheans and the Problems of Longline Dismemberment of the Lower Cambrian), Moscow: Nauka, 1973.Google Scholar
  19. Sheth, R., Marcon, L., Bastida, M.F., Junco, M., Quintana, L., Dahn, R., Kmita, M., Sharpe, J., and Ros, M.A., Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism, Science, 2012, vol. 338, pp. 1476–1480.CrossRefPubMedCentralPubMedGoogle Scholar
  20. Shishkin, M.A., Evolution as an epigenetic process, in Sovremennaya paleontologiya. Metody, napravleniya, problemy, prakticheskoe prilozhenie: Sprav. posobie (Modern Paleontology. Methods, Trends, Problems, and Practical Application: A Handbook), Menner, V.V. and Makridin, V.P., Eds., Moscow: Nedra, 1988, vol. 2, pp. 142–169.Google Scholar
  21. Shishkin, M.A., Evolution as maintenance of evolutionary stability, in Tez. konf. “Morfogenez v individual’nom i istoricheskom razvitii: ustoichivost’ i variabel’nost’,” 21–23 aprelya 2015 g. Moskva (Proc. Conf. “Morphogenesis in Individual and Historical Development: Stability and Variability”, April 21–23, 2015, Moscow), Moscow, 2015, pp. 70–75.Google Scholar
  22. Timofeev-Resovskii, N.V., Yablokov, A.V., and Glotov, N.V., Ocherk ucheniya o populyatsii (Outline of the Doctrine of the Population), Moscow: Nauka, 1973.Google Scholar
  23. Turing, A.M., The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London: Ser. B, Biol. Sci., 1952, vol. 237, no. 641, pp. 37–72.CrossRefGoogle Scholar
  24. Tyler, M.J., Australian Frogs, Victoria: Penguin Books Australia Ltd., 1989, pp. 163–187.Google Scholar
  25. Vavilov, N.I., Zakon gomologichnykh ryadov v nasledstvennoi izmenchivosti: Linneevskii vid kak sistema (The Law of Homologous Series in Hereditary Variability: Linnaean Species As a System), Leningrad: Nauka, 1967.Google Scholar
  26. Vershinin, V.L., Significance of recessive and dominant mutations in adaptive processes of the genus Rana in the modern biosphere, in Herpetologia Bonnensis II. Proc. 13th Congr. Soc. Eur. Herpetol., Vences, M., Kohler, J., Ziegler, T., and Bohme, W., Eds., Bonn: SEH, 2006, pp. 197–200.Google Scholar
  27. Vershinin, V.L., Distribution and species composition of amphibians within the municipal boundaries of Sverdlovsk, in Informatsionnye materialy Instituta ekologii rastenii i zhivotnykh (Information Materials of the Institute of Plant and Animal Ecology), Sverdlovsk: UNTs AN SSSR, 1980, pp. 5–6.Google Scholar
  28. Vershinin, V.L., Ecological features of amphibian populations in urban areas, Extended Abstract of Doctoral (Biol.) Dissertation, Yekaterinburg: IERiZh UrO RAN, 1997.Google Scholar
  29. Vershinin, V.L. and Kamkina, I.N., Proliferative activity of corneal epithelium and specific features of morphogenesis in postmetamorphic Rana arvalis Nilss. in urbanized areas, Russ. J. Ecol., 2001, vol. 32, no. 4, pp. 272–276.CrossRefGoogle Scholar
  30. Vershinin, V.L., Ecological specificity and microevolution in amphibian populations in urbanized areas, in Ecological Specificity of Amphibian Populations. Advances in Amphibian Research in the Former Soviet Union, Sophia: Pensoft Publ., 2002, vol. 7, pp. 1–161.Google Scholar
  31. Vershinin, V.L., Morphological deviations in population Rana arvalis Nilss. on urbanized territories: spectrum, topography, frequency, in Herpetologica Petropolitana, Ananjeva, N. and Tsinenko, O., Eds., Proc. 12th Ord. Gen. Meeting Soc. Eur. Herpetol., Russ. J. Herpetol., St. Petersburg, 2005, suppl. 12, pp. 235–237.Google Scholar
  32. Vershinin, V.L., Deviant forms of morphological variability of amphibians as a method to study microevolutionary processes, in Ekologiya v vysshei shkole: sintez nauki i obrazovaniya: Mater. Vseros. nauch.-prakt. konf. 30 marta—1 aprelya 2009 g. (Ecology in Higher School: The Synthesis of Science and Education: Proc. Sci.-Pract. Conf., March 30–April 1, 2009), Chelyabinsk: Izd. Chelyab. Gos. Ped. Univ., 2009, part 1, pp. 13–19.Google Scholar
  33. Vershinin, V.L., External abnormalities in the populations of the common frog (Rana temporaria L.) of the Ural mountain country, in Problemy sokhraneniya biologicheskogo raznoobraziya i ispol’zovaniya biologicheskikh resursov (Problems of Biodiversity Conservation and Use of Biological Resources), Minsk: Medzhik, 2009, part 2, pp. 406–409.Google Scholar
  34. Vershinin, V.L. and Neustroeva, N.S., The role of trematode infestation in the specifics of skeleton morphogenesis of Rana arvalis Nilsson, 1842, Dokl. Biol. Sci., 2011, vol. 440, pp. 290–292.CrossRefPubMedGoogle Scholar
  35. Vershinin, V.L., Functional features of amphibian populations in a gradient of urbanization, Izv. Samar. Nauch. Tsentra RAN, 2014, vol. 16, no. 5 (1), pp. 344–348.Google Scholar
  36. Vershinin, V.L., Osnovy metodologii i metody issledovaniya anomalii i patologii amfibii: Uchebnoe posobie (Basics of the Methodology and Methods of Research of Abnormalities and Pathologies of Amphibians: A Manual), Yekaterinburg: Izd. Ural. Univ., 2015.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. L. Vershinin
    • 1
    • 2
  • S. D. Vershinina
    • 1
  • N. S. Neustroeva
    • 1
  1. 1.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations