Biology Bulletin

, Volume 44, Issue 10, pp 1228–1236 | Cite as

The Structural and Functional State of Soil Microbiota in a Chemically Polluted Environment

  • T. V. Zhuikova
  • V. A. Gordeeva
  • V. S. Bezel’
  • L. V. Kostina
  • I. B. Ivshina


The structural and functional diversity of the main ecological trophic groups of soil microorganisms in meadow soils of the Central Urals anthropogenically contaminated with heavy metals was studied. The increase in the total numbers of these microorganisms in technozems, in comparison with those in agrozems, is due to the higher abundance of iron-reducing, denitrifying, nitrogen-fixing, and sulfate-reducing bacteria, an increase in cellulolytic activity, and the dependence of these characteristics on the toxic load of the soil. A reductive structure of the microbial community with the predominance of r-strategists, which reflects earlier stages of microbiocenoses succession under soil contamination, is formed under soil pollution with heavy metals.


ecological trophic groups of bacteria succession rate oligotrophic capacity environmental pollution heavy metals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artamonova, V.S., Mikrobiologicheskie osobennosti antropogennogo preobrazovaniya pochv Zapadnoi Sibiri (Microbiological Features of Anthropogenic Transformation of Soils in West Siberia), Novosibirsk: Izd. SO RAN, 2002.Google Scholar
  2. Blum, W.E.H. and Eswaran, H., Soils for sustaining global food production, J. Food Sci., 2004, vol. 69, no. 2, pp. 37–42.Google Scholar
  3. Bogorodskaya, A.V., Ponomareva, T.V., Shapchenkova, O.A., and Shishikin, A.S., Assessment of the state of soil microbial cenoses in the forest-tundra zone under conditions of airborne industrial pollution, Euras. Soil Sci., 2012, vol. 45, no. 5, pp. 521–531.CrossRefGoogle Scholar
  4. Brooks, P.C., The use of microbial parameters in monitoring soil pollution by heavy metals, Biol. Fertil. Soils, 1995, vol. 19, no. 4, pp. 269–279.CrossRefGoogle Scholar
  5. Chen, G., Gan, L., Wang, Sh., Wu, Y., and Wan, G., A comparative study on the microbiological characteristics of soils under different land-use conditions from karst areas of Southwest China, Chinese J. Geochem., 2001, vol. 20, no. 1, pp. 52–58.CrossRefGoogle Scholar
  6. Evdokimova, G.A., Korneikova, M.V., and Mozgova, N.P., Changes in the properties of soils and soil biota in the impact zone of the aerotechnogenic emissions from the Kandalaksha aluminum smelter, Euras. Soil Sci., 2013, vol. 46, no. 10, pp. 1042–1048.CrossRefGoogle Scholar
  7. Gadd, G.M., Interaction of fungi with toxic metals, New Phytol., 1993, vol. 124, no. 1, pp. 25–60.CrossRefGoogle Scholar
  8. Giller, K.E., Witter, E., and McGrath, S.P., Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review, Soil Biol. Biochem., 1998, vol. 30, nos. 10–11, pp. 1389–1414.CrossRefGoogle Scholar
  9. Global Environmental Monitoring System (GEMS): Action Plan for Phase I. SCOPE Rep. 3, Toronto, 1973.Google Scholar
  10. Instrumental’nye metody v pochvennoi mikrobiologii (Instrumental Methods in Soil Microbiology), Andreyuk, E.A., Ed., Kiev: Nauk. dumka, 1982.Google Scholar
  11. Ivshina, I.B., Kostina, L.V., Kamenskikh, T.N., Zhuikova, V.A., Zhuikova, T.V., and Bezel’, V.S., Soil microbiocenosis as an indicator of stability of meadow communities in the environment polluted with heavy metals, Russ. J. Ecol., 2014, vol. 45, no. 2, pp. 83–89.CrossRefGoogle Scholar
  12. Katalog shtammov Regional’noi profilirovannoi kollektsii alkanotrofnykh mikroorganizmov (Catalogue of Strains of the Regional Specialized Collection of Alkanotrophic Microorganisms), Ivshina, I.B., Ed., Moscow: Nauka, 1994.Google Scholar
  13. Kostina, L.V., Kuyukina, M.S., and Ivshina, I.B., Methods for cleaning soils contaminated with heavy metals using (bio)surfactants (a review), Vestn. Perm. Gos. Univ., Ser. Biol., 2009, no. 36, pp. 95–110.Google Scholar
  14. Lorenz, K. and Kandeler, E., Microbial biomass and activities in urban soils in two consecutive years, J. Plant Nutrit. Soil Sci., 2006, vol. 169, no. 6, pp. 799–808.CrossRefGoogle Scholar
  15. Metodika vypolneniya izmerenii massovoi doli kislotorastvorimykh form metallov (medi, svintsa, tsinka, nikelya, kadmiya) v probakh pochvy atomno-absorbtsionnym analizom RD 52.18.191-89 (Method for Measuring the Mass Fraction of Acid Forms of Metals (Copper, Lead, Zinc, Nickel, and Cadmium) in Soil Samples by Atomic Absorption Analysis RD 52.18.191-89 [Electronic Resource], Moscow: Gos. komitet SSSR po gidrometeorologii, 1990. (reference date February 12, 2015).Google Scholar
  16. Metody pochvennoi mikrobiologii i biokhimii (Methods of Soil Microbiology and Biochemistry) Zvyagintsev, D.G., Ed., Moscow: Izd. MGU, 1991.Google Scholar
  17. Polyanskaya, L.M., Sukhanova, N.I., Chakmazyan, K.V., and Zvyagintsev, D.G., Changes in the structure of soil microbial biomass under fallow, Euras. Soil Sci., 2012, vol. 45, no. 7, pp. 710–716.CrossRefGoogle Scholar
  18. Semenova, I.N., Il’bulova, G.R., and Suyundukov, Ya.T., Study of ecological and trophic groups of soil microorganisms in the zone of influence of ore mining enterprises, Fundam. Issled., 2011, no. 11, pp. 410–414.Google Scholar
  19. Sorokina, O.A., Pavlova, L.M., and Kiselev, V.I., Effect of mobile forms of heavy metals on the microbiological activity of soils of alluvial gold mining (a case study of the length of Dzhalinda River, Lower Amur region), Sib. Ekol. Zh., 2008, no. 3, pp. 473–484.Google Scholar
  20. Stepanov, A.L., Tsvetkova, O.B., and Panikov, S.N., Changes in the structure of the microbial community under the influence of oil and radioactive pollution, Euras. Soil Sci., 2012, vol. 45, no. 12, p. 1169.CrossRefGoogle Scholar
  21. Svirskene, A., Microbiological and biochemical indicators of anthropogenic impacts on soils, Euras. Soil Sci., 2003, vol. 36, no. 2, pp. 192–200.Google Scholar
  22. Umarov, M.M. and Azieva, E.E., Some biochemical parameters of soil pollution with heavy metals, in Tyazhelye metally v okruzhayushchei srede (Heavy Metals in the Environment), Moscow: Izd. MGU, 1980, pp. 109–115.Google Scholar
  23. Vorobeichik, E.L., Seasonal changes in the spatial distribution of cellulolytic activity of soil microflora under conditions of atmospheric pollution, Russ. J. Ecol., 2007, vol. 38, no. 6, pp. 398–407.CrossRefGoogle Scholar
  24. Zagural’skaya, L.M. and Zyabchenko, S.S., The impact of industrial pollution on the microbiological processes in soils of the boreal forest in the Kostomuksha region, Pochvovedenie, 1994, no. 5, pp. 105–101.Google Scholar
  25. Zenova, G.M., Stepanov, A.L., Likhacheva, A.A., and Manucharova, N.A., Praktikum po biologii pochv: ucheb. posobie (A Practical Course in Soil Biology: Manual), Moscow: Izd. MGU, 2002.Google Scholar
  26. Zhao, D., Li, F., Yang, Q., Wang, R., Song, Y., and Tao, Y., The influence of different types of urban land use on soil microbial biomass and functional diversity in Bejing, China, Soil Use Manage., 2013, vol. 29, no. 2, pp. 230–239.CrossRefGoogle Scholar
  27. Zhuikova, T.V., Meling, E.V., Kaigorodova, S.Yu., Bezel’, V.S., and Gordeeva, V.A., Specific features of soils and herbaceous plant communities in industrially polluted areas of the Middle Urals, Russ. J. Ecol., 2015, vol. 46, no. 3, pp. 213–221.CrossRefGoogle Scholar
  28. Zvyagintsev, D.G., Kurakov, A.V., Umarov, M.M., and Filipp, Z., Microbiological and biochemical indices of lead contamination of sod-podzolic soil, Biol. Pochv, 1997, no. 9, pp. 1124–1131.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • T. V. Zhuikova
    • 1
    • 2
  • V. A. Gordeeva
    • 1
    • 2
  • V. S. Bezel’
    • 2
  • L. V. Kostina
    • 3
  • I. B. Ivshina
    • 3
    • 4
  1. 1.Nizhnii Tagil State Social and Pedagogical Institute of Russian State Vocational Pedagogical UniversityNizhnii TagilRussia
  2. 2.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  3. 3.Institute of Ecology and Genetics of Microorganisms, Ural BranchRussian Academy of SciencesPermRussia
  4. 4.Perm State UniversityPermRussia

Personalised recommendations