Biology Bulletin

, Volume 44, Issue 10, pp 1295–1301 | Cite as

Physiological and Biochemical Aspects of Halophyte Ecology

  • O. A. Rozentsvet
  • V. N. Nesterov
  • E. S. Bogdanova


Physiological and biochemical features of euhalophytes, сrinohalophytes, and glycohalophytes growing in natural conditions in El’ton Lake area were studied. The water content in tissues, intensity of lipid peroxidation, and membrane permeability were found to determine the differentiation of plants by their salt accumulation strategy. The concentration of pigments and their ratio are related to the mesostructure of leaves and are dependent on the salt accumulation strategy and life form. The membrane complex is connected with the cell structure and photosynthetic apparatus. The specificity of ion transportation depends on the specific features of plants.


halophytes lipids mesostructure hydration membrane permeability Na+ and K+ accumulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dajic, Z., Salt stress, in Physiology and Molecular Biology of Stress Tolerance in Plant, Madhava Rao, K.V., Raghavendra, A.S., and Janardhan Reddy, K., Eds., Dordrecht: Springer, 2006, pp. 41–101.CrossRefGoogle Scholar
  2. Davitavyan, N.A. and Sampiev, A.M., The mineral composition of Ononis arvensis L. grass, Fundam. Issled., 2012, no. 6, pp. 482–484.Google Scholar
  3. Fuglsang, A.T., Paez-Valencia, J., and Gaxiola, R.A., Plant proton pumps: regulatory circuits involving H+-ATPase and H+-PPAse, in Transporters and Pumps in Plant Signaling, Geisler, M. and Venema, K., Eds., Berlin, Heidelberg: Springer-Verlag, 2011, pp. 39–64.CrossRefGoogle Scholar
  4. Genkel, P.A., Fiziologiya zharo-i zasukhoustoichivosti rastenii (Physiology of Heat and Drought Resistance of Plants), Moscow: Nauka, 1982.Google Scholar
  5. Glenn, E.P., Brown, J.J., and Blumwald, E., Salt tolerance and crop potential of halophytes, Crit. Rev. Plant Sci., 1999, vol. 18, no. 2, pp. 227–255.CrossRefGoogle Scholar
  6. Guan, B., Yu, J., Wang, X., Fu, Y., Kan, X., Lin, Q., Han, G., and Lu, Z., Physiological responses of halophyte Suaeda salsa to water table and salt stresses in coastal wetland of Yellow River delta, Clea, Soil, Air, Water, 2011, vol. 39, no. 12, pp. 1029–1035.CrossRefGoogle Scholar
  7. Isayenkov, S.V., Isner, J.C., and Maathuis, F.J.M., Vacuolar ion channels: roles in plant nutrition and signalling, FEBS Lett., 2010, vol. 584, no. 10, pp. 1982–1988.CrossRefPubMedGoogle Scholar
  8. Ivanova, L.A. and Pyankov, V.I., The effect of environmental factors on the structural indices of leaf mesophyll, Bot. Zh., 2002, vol. 87, no. 2, pp. 17–28.Google Scholar
  9. Kholodova, V.P., Volkov, K.S., and Kuznetsov, V.V., Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation, Russ. J. Plant Physiol., 2005, vol. 52, no. 6, pp. 748–757.CrossRefGoogle Scholar
  10. Kluge, C., Lahr, J., Hanitzsch, M., Bolte, S., Golldack, D., and Dietz, K.J., New insight into the structure and regulation of the plant vacuolar H+-ATPase, J. Bioenerg. Biomembr., 2003, vol. 35, no. 4, pp. 377–388.CrossRefPubMedGoogle Scholar
  11. Kuznetsov, Vl.V. and Shevyakova, N.I., Polyamines and plant adaptation to saline environments, in Desert Plants, Ramawat, K.G., Ed., Heidelberg: Springer-Verlag, 2010, pp. 261–298.CrossRefGoogle Scholar
  12. Lichtenthaler, H.K., Chlorophyll and carotenoids: pigments of photosyntethetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 331–382.Google Scholar
  13. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.PubMedGoogle Scholar
  14. Lu, C.M., Qiu, N.W., Wang, B.S., and Zhang, J.H., Salinity treatment shows no effects on photosystem ii photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa, J. Exp. Bot., 2003, vol. 54, no. 383, pp. 851–860.CrossRefPubMedGoogle Scholar
  15. Luttge, U., Plant cell membranes and salinity: structural, biochemical and biophysical changes, Revista Brasileira Fisiologa Vegetal., 1993, vol. 5, no. 2, pp. 217–224.Google Scholar
  16. Nesterov, V.N., Rozentsvet, O.A., and Bogdanova, E.S., Composition of membranes of wild halophytes with different mechanisms of salt balance regulation depending on abiotic environmental factors, Biol. Membr., 2014, vol. 31, no. 2, pp. 137–146.Google Scholar
  17. Rozentsvet, O.A., Nesterov, V.N., Bogdanova, E.S., and Lysenko, T.M., Peculiarities of the composition of lipids of two species of the genus Suaeda Scop. under the conditions of Prieltonie, Povolzh. Ekol. Zh., 2013, no. 3, pp. 325–335.Google Scholar
  18. Rozentsvet, O.A., Nesterov, V.N., and Bogdanova, E.S., Membrane-forming lipids of wild halophytes growing under the conditions of Prieltonie of South Russia, Phytochemistry, 2014, vol. 105, pp. 37–42.CrossRefPubMedGoogle Scholar
  19. Shamsutdinov, Z.Sh., Savchenko, I.V., and Shamsutdinov, N.Z., Galofity Rossii, ikh ekologicheskaya otsenka i ispol’zovanie (Halophytes of Russia, Their Environmental Assessment and Use), Moscow: Edel’-M, 2001.Google Scholar
  20. Shi, H., Ishitani, M., Kim, C., and Zhu, J.-K., The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+-antiporter, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 12, pp. 6896–6901.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Shinozaki, K. and Yamaguchi-Shinozaki, K., Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants, Austin, Texas: RG Landes, 1999.Google Scholar
  22. Smirnov, L.P. and Bogdan, V.V., Lipidy v fiziologo-biokhimicheskikh adaptatsiyakh ektotermnykh organizmov k abioticheskim i biologicheskim faktoram sredy (Lipids in Physiological and Biochemical Adaptations of Ectothermic Organisms to Abiotic and Biological Environmental Factors), Moscow: Nauka, 2007.Google Scholar
  23. Stroganov, B.P., Fiziologicheskie osnovy soleustoichivosti rastenii (pri raznokachestvennom zasolenii pochvy) (Physiological Basis of Salt Tolerance in Plants (at Different Quality of Soil Salinity)), Moscow: Izd. AN SSSR, 1962.Google Scholar
  24. Sui, N., Li, M., Li, K., Song, J., and Wang, B.-S., Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity, Photosynthetica, 2010, vol. 48, no. 4, pp. 623–629.CrossRefGoogle Scholar
  25. Taisumov, M.A., Abdurzakova, A.S., Magomadova, R.S., and Astamirova, M.A.-M., Classification of halophytes of the Terek-Kuma Lowland by anatomical and physiological traits, Vestn. AN ChR, 2014, no. 1 (22), pp. 35–46.Google Scholar
  26. Terletskaya, N.V., The permeability of the cell membrane as a measure of the resistance of plants to abiotic stresses, Izv. NAN Resp. Kazakhstan, Ser. Biol., 2009, no. 2, pp. 60–64.Google Scholar
  27. Vaskovsky, V.E. and Latyshev, N.A., Modified Jungnickel’s reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms, J. Chromatogr., 1975, vol. 115, no. 1, pp. 246–249.CrossRefPubMedGoogle Scholar
  28. Voznesenskaya, E.V., Chuong, S.D.X., Koteyeva, N.K., Franceschi, V.R., Freitag, H., and Edwards, G.E., Structural, biochemical, and physiological characterization of C4 photosynthesis in species having two vastly different types of Kranz anatomy in genus Suaeda (Chenopodiaceae), Plant Biol., 2007, vol. 9, no. 6, pp. 745–757.CrossRefPubMedGoogle Scholar
  29. Yeo, A.R. and Flowers, T.J., Ion transport in Suaeda maritima: its relation to growth and implications for the pathway of radial transport of ions across the root, J. Exp. Bot., 1986, vol. 37, no. 2, pp. 143–159.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • O. A. Rozentsvet
    • 1
  • V. N. Nesterov
    • 1
  • E. S. Bogdanova
    • 1
  1. 1.Institute of Ecology of the Volga BasinRussian Academy of SciencesTolyattiRussia

Personalised recommendations