Biology Bulletin

, Volume 44, Issue 10, pp 1215–1227 | Cite as

Phenological Changes in the Wintering of Pelobates fuscus (Pelobatidae, Amphibia) in the Climate Transformation Conditions in the Northern Lower Volga Region

  • M. V. Yermokhin
  • V. G. Tabachishin
  • G. A. Ivanov


The patterns of change in the calendar dates of the start, end, and duration of wintering of the common spadefoot toad (Pelobates fuscus) in the Medveditsa River valley (Lysogorskii district, Saratov oblast) in the period from 1892 until 2014 are considered. A reduction in the duration of wintering by seven days due to a shift in the start of wintering to a later date and that of the end of wintering to an earlier date (on average) over the last 120 years is shown. The changes in the end and start of wintering mainly began to emerge in the 1950s and 1980s, respectively, and significantly accelerated in 2002–2014. The periodicity of changes in the dates of the start and end of wintering occur mainly owing to the winter severity cycles (8–9 years) and the humidity–aridity ones (Brückner cycle of 36–38 years). Our analysis of the temperature regime across the soil profile shows that the shortening of wintering is mainly caused by the earlier start of the spawning migration of mature individuals of this species in the spring. The depth of location of P. fuscus individuals in the soil profile has decreased steadily from the early 1980s to 2014. Predictive models have been developed allowing us to forecast the termination of movement of P. fuscus individuals in the soil profile from the horizons where they can be found in the period of activity by 2050, as well as a significant reduction in the wintering duration or even its complete disappearance as a phase of the annual cycle in the course of 315 years provided that the modern climatic trend will continue.


Pelobates fuscus phenology wintering climate transformation Saratov oblast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araujo, M.B., Thuiller, W., and Pearson, R.G., Climate warming and the decline of amphibians and reptiles in Europe, J. Biogeogr., 2006, vol. 33, no. 10, pp. 1712–1728.CrossRefGoogle Scholar
  2. Arnfield, H., Grant, R., Monk, C., and Uller, T., Factors influencing the timing of spring migration in common toads (Bufo bufo): timing of spring migration in toads, J. Zool., 2012, vol. 288, no. 2, pp. 112–118.CrossRefGoogle Scholar
  3. Astaf’eva, N.M., Wavelet analysis: basic theory and application examples, Usp. Fiz. Nauk, 1996, vol. 166, no. 11, pp. 1145–1170.CrossRefGoogle Scholar
  4. Average annual mean, minimum, and maximum air temperature and rainfall data in different years in the Town of Oktyabr’skii, Termograf: Archival Air Temperature and Precipitation Data [Electronic resource], 2005. (reference date May 24, 2014).Google Scholar
  5. Belyachenko, A.V., Shlyakhtin, G.V., Filip’echev, A.O., Mosolova, E.Yu., Mel’nikov, E.Yu., Yermokhin, M.V., Tabachishin, V.G., and Emel’yanov, A.V., Metody kolichestvennykh uchetov i morfologicheskikh issledovanii nazemnykh pozvonochnykh zhivotnykh (Methods of Quantitative Surveys and Morphological Studies of Terrestrial Vertebrates), Saratov: Izd. Sarat. Univ., 2014.Google Scholar
  6. Blaustein, A.R., Belden, L.K., Olson, D.H., Green, D.M., Root, T.L., and Kiesecker, J.M., Amphibian breeding and climate change, Conserv. Biol., 2001, vol. 15, no. 6, pp. 1804–1809.CrossRefGoogle Scholar
  7. Blaustein, A.R., Searle, C., Bancroft, B.A., and Lawler, J., Amphibian population declines and climate change, in Ecological Consequences of Climate Change: Mechanisms, Conservation, and Management, Beever, E.A. and Belant, J.L., Eds., Boca Raton: CRC Press, 2011, pp. 29–53.CrossRefGoogle Scholar
  8. Borkin, L.J., Litvinchuk, S.N., Rosanov, J.M., and Milto, K.D., Cryptic speciation in Pelobates fuscus (Anura, Pelobatidae): evidence from DNA flow cytometry, Amphibia–Reptilia, 2001a, vol. 22, no. 4, pp. 387–396.Google Scholar
  9. Borkin, L.J., Litvinchuk, S.N., Milto, K.D., Rosanov, J.M., and Khalturin, M.D., Cryptic speciation in Pelobates fuscus (Amphibia, Pelobatidae): cytometric and biochemical evidence, Dokl. Biol. Sci., 2001b, vol. 376, pp. 86–88.CrossRefGoogle Scholar
  10. Byalko, A.V. and Gamburgtsev, A.G., Weather statistics, Priroda (Moscow, Russ. Fed.), 2000, no. 12, pp. 6–10.Google Scholar
  11. Corn, P.S., Rectilinear fences with traps, in Izmerenie i monitoring biologicheskogo raznoobraziya: standartnye metody dlya zemnovodnykh (Biodiversity Measuring and Monitoring: Standard Methods for Amphibians), Moscow: Tov. Nauch. Izd. KMK, 2003, pp. 117–127.Google Scholar
  12. Corn, P.S., Climate change and amphibians, Anim. Biodivers. Conserv., 2005, vol. 28, no. 1, pp. 59–67.Google Scholar
  13. Corn, P.S. and Bury, R.B., Sampling methods for terrestrial amphibians and reptiles, USDA Forest Service, Pacific Northwest Research Station, Portland. General Technical Report PNWGTR-275, 1990.Google Scholar
  14. Corn, P.S. and Muths, E., Variable breeding phenology affects the exposure of amphibian embryos to ultraviolet radiation, Ecology, 2002, vol. 83, no. 11, pp. 2958–2963.CrossRefGoogle Scholar
  15. Cummins, C.P., UV-B radiation, climate change and frogs—the importance of phenology, Ann. Zool. Fenn., 2003, vol. 40, no. 1, pp. 61–67.Google Scholar
  16. Erdakov, L.N. and Telepnev, V.G., Cyclicity in the population dynamics of grouse (Bonasa bonasia L., 1758) from Novosibirsk oblast, in Estestvennye i matematicheskie nauki v sovremennom mire: materialy XXVI mezhdunar. nauch.-prakt. konf. (Natural and Mathematical Sciences in the Modern World: Proc. XXVI Int. Sci. and Practical. Conf.), Novosibirsk: Izd. SibAK, 2015, pp. 88–94.Google Scholar
  17. van Gelder, J.J. and Hoedemaekers, H.C.M., Sound activity and migration during the breeding period of Rana tem poraria L., R. arvalis Nilsson, Pelobates fuscus Laur. and Rana esculenta L., J. Anim. Ecol., 1971, vol. 40, no. 3, pp. 559–568.CrossRefGoogle Scholar
  18. Hammer, O., Harper, D.A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Paleontol. Electron., 2001, vol. 4, no. 1, pp. 1–9.Google Scholar
  19. Hartel, T., Sas, I., Pernetta, A., and Geltsch, I.C., The reproductive dynamics of temperate amphibians: a review, North Western J. Zool., 2007, vol. 3, no. 2, pp. 127–145.Google Scholar
  20. Ibanez, I., Primack, R.B., Miller-Rushing, A.J., Ellwood, E., Higuchi, H., Lee, S.D., Kobori, H., and Silander, J.A., Forecasting phenology under global warming, Phil. Transact. Roy. Soc. B: Biol. Sci., 2010, vol. 365, no. 1555, pp. 3247–3260.CrossRefGoogle Scholar
  21. Kowalewski, L., Observations on the phaenology and ecology of Amphibia in the region of Czestochowa, Acta Biologica Cracoviensia. Ser. Zool., 1974, vol. 19, no. 3, pp. 391–460.Google Scholar
  22. Loman, J., Primary and secondary phenology. Does it pay a frog to spawn early?, J. Zool., 2009, vol. 279, no. 1, pp. 64–70.CrossRefGoogle Scholar
  23. Møller, A.P., Environmental indicators of climate change: phenological aspects, in Environmental Indicators, Armon, R.H. and Hänninen, O., Eds., Dordrecht: Springer Netherlands, 2015, pp. 39–49.Google Scholar
  24. Paton, P.W. and Crouch, W.B., Using the phenology of pond-breeding amphibians to develop conservation strategies, Conserv. Biol., 2002, vol. 16, no. 1, pp. 194–204.CrossRefGoogle Scholar
  25. Polukonova, A.V., Demin, A.G., Polukonova, N.V., Yermokhin, M.V., and Tabachishin, V.G., Molecular genetic study of common spadefoot Pelobates fuscus (Laurenti, 1768) local populations in the Medveditsa River valley (Saratov region) by the mtDNA CytB gene region, Sovr. Gerpetol., 2013a, vol. 13, nos. 3/4, pp. 117–121.Google Scholar
  26. Polukonova, A.V., Demin, A.G., Polukonova, N.V., Yermokhin, M.V., and Tabachishin, V.G., New haplotypes of the common spadefoot Pelobates fuscus (Laurenti, 1768) of the population in the Medveditsa River valley (Saratov oblast), in Biologiya vnutrennikh vod: materialy XV shk.-konf. molodykh uchenykh (Inland Water Biology: Proc. XV School-Conf. Young Scientists), Kostroma: Kostrom. Pechat. Dom, 2013b, pp. 304–308.Google Scholar
  27. Reading, C.J., The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo, Oecologia, 1998, vol. 117, no. 4, pp. 469–475.CrossRefPubMedGoogle Scholar
  28. Savage, R.M., The burrowing and emergence of the spadefoot toad, Pelobates fuscus fuscus Wagler, Proc. Zool. Soc. London, 1942, vol. 112, nos. 1–2, pp. 21–35.Google Scholar
  29. Schwartz, M.D., Ahas, R., and Aasa, A., Onset of spring starting earlier across the northern hemisphere, Global Change Biol., 2006, vol. 12, no. 2, pp. 343–351.CrossRefGoogle Scholar
  30. Scott, W.A., Pithart, D., and Adamson, J.K., Long-term united kingdom trends in the breeding phenology of the common frog, Rana temporaria, J. Herpetol., 2008, vol. 42, no. 1, pp. 89–96.CrossRefGoogle Scholar
  31. Seimon, T., Global warming from a frog’s perspective: a call for immediate action, Acta Zool. Lilloana, 2010, vol. 54, nos. 1–2, pp. 3–10.Google Scholar
  32. Shlyakhtin, G.V. and Tabachishin, V.G., Features of realization of trophic capacities of syntopic populations of Pelobates fuscus and Rana ridibunda in the north of the Lower Volga region, Sovr. Gerpetol., 2014, vol. 14, no. 1/2, pp. 54–56.Google Scholar
  33. Shnitnikov, A.V., Intrasecular fluctuations in the level of steppe lakes of Western Siberia and Northern Kazakhstan and their dependence on climate, in Tr. laboratorii ozerovedeniya AN SSSR (Transactions of the Laboratory of Limnology, USSR Academy of Sciences) Moscow: Izd. AN SSSR, 1950, vol. 1, pp. 28–129.Google Scholar
  34. Sparks, T.H. and Smithers, R.J., Is spring getting earlier?, Weather, 2002, vol. 57, no. 5, pp. 157–166.CrossRefGoogle Scholar
  35. Sparks, T., Tryjanowski, P., Cooke, A., Crick, H., and Kuzniak, S., Vertebrate phenology at similar latitudes: temperature responses differ between Poland and the United Kingdom, Climate Res., 2007, vol. 34, no. 2, pp. 93–98.CrossRefGoogle Scholar
  36. Sutton, R., Suckling, E., and Hawkins, E., What does global mean temperature tell us about local climate?, Phil. Transact. Roy. Soc. A: Math. Phys. Eng. Sci., 2015, vol. 373, no. 2054, pp. 1–14.Google Scholar
  37. Terhivuo, J., Phenology of spawning for the common frog (Rana temporaria L.) in Finland from 1846 to 1986, Ann. Zool. Fenn., 1988, vol. 25, no. 2, pp. 165–175.Google Scholar
  38. The soil temperature at depths of up to 320 cm (daily data), All-Russian Research Institute of Hydrometeorological Information—World Data Center [Electronic resource], Obninsk, 2014. (reference date May 30, 2015).Google Scholar
  39. Todd, B.D. and Winne, C.T., Ontogenetic and interspecific variation in timing of movement and responses to climatic factors during migrations by pond-breeding amphibians, Can. J. Zool., 2006, vol. 84, no. 6, pp. 715–722.CrossRefGoogle Scholar
  40. Todd, B.D., Scott, D.E., Pechmann, J.H.K., and Gibbons, J.W., Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community, Proc. Roy. Soc. B: Biol. Sci., 2011, vol. 278, no. 1715, pp. 2191–2197.CrossRefGoogle Scholar
  41. Torrence, C. and Compo, G.P., A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 1998, vol. 79, no. 1, pp. 61–78.CrossRefGoogle Scholar
  42. Tryjanowski, P., Rybacki, M., and Sparks, T., Changes in the first spawning dates of common frogs and common toads in Western Poland in 1978–2002, Ann. Zool. Fenn., 2003, vol. 40, no. 6, pp. 459–464.Google Scholar
  43. Vasseur, D.A., DeLong, J.P., Gilbert, B., Greig, H.S., Harley, C.D.G., McCann, K.S., Savage, V., Tunney, T.D., and O’Connor, M.I., Increased temperature variation poses a greater risk to species than climate warming, Proc. Roy. Soc. B: Biol. Sci., 2014, vol. 281, no. 1779, p. 2612.CrossRefGoogle Scholar
  44. Walpole, A.A., Bowman, J., Tozer, D.C., and Badzinski, D.S., Community-level response to climate change: shifts in anuran calling phenology, Herpetol. Conserv. Biol., 2012, vol. 7, no. 2, pp. 249–257.Google Scholar
  45. Weather archive in the Town of Oktyabrskii, Prognosis [electronic resource], 2014.Архив_пого-ды_в_Октябрьском_городке (reference date May 25, 2014).Google Scholar
  46. Wiener, A.K., Phänologie und Wanderverhalten einer Knoblauchkröten-Population (Pelobates fuscus fuscus, Laurenti, 1768) auf der Wiener Donauinselein Vergleich der Untersuchungsjahre 1986, 1987 und 1989–1995, Stapfia, 1997, vol. 51, no. 2, pp. 151–164.Google Scholar
  47. Yermokhin, M.V. and Tabachishin, V.G., Dynamics of dimensional and sexual structure of yearlings of the common spadefoot Pelobates fuscus (Laurenti, 1768) in the Medveditsa River floodplain, Sovr. Gerpetol., 2010, vol. 10, nos. 3/4, pp. 101–108.Google Scholar
  48. Yermokhin, M.V. and Tabachishin, V.G., Convergence of the results of count of migrating yearlings of the common spadefoot, Pelobates fuscus (Laurenti, 1768) at a complete and partial enclosure of a spawning water body with fences with trapping cylinders, Sovr. Gerpetol., 2011, vol. 11, nos. 3/4, pp. 121–131.Google Scholar
  49. Yermokhin, M.V., Tabachishin, V.G., and Ivanov, G.A., Optimization of the method of count of amphibians with fences with trapping cylinders, in Problemy izucheniya kraevykh struktur biotsenozov: materialy 3-i mezhdunar. nauch. konf. (Problems in the Study of the Boundary Structures of Biocenoses: Proc. 3rd Int. Sci. Conf.), Saratov: Izd Sarat. Gos. Univ., 2012, pp. 157–163.Google Scholar
  50. Yermokhin, M.V., Ivanov, G.A., and Tabachishin, V.G., Phenology of spawning migrations of anurans in the Medveditsa River valley (Saratov oblast), Sovr. Gerpetol., 2013a, vol. 13, nos. 3/4, pp. 101–111.Google Scholar
  51. Yermokhin, M.V., Tabachishin, V.G., Ivanov, G.A., and Bogoslovskii, D.S., Features of the distribution of the common spadefoot (Pelobates fuscus) in the soil profile at the beginning of wintering in the Medveditsa River valley, Sovr. Gerpetol., 2013b, vol. 13, nos. 1/2, pp. 22–26.Google Scholar
  52. Yermokhin, M.V., Tabachishin, V.G., and Ivanov, G.A., Phenology of spawning migrations of the common spadefoot Pelobates fuscus (Pelobatidae, Amphibia) in the Medveditsa River valley (Saratov oblast), Povolzh. Ekol. Zh., 2014, no. 3, pp. 342–350.Google Scholar
  53. Yermokhin, M.V., Tabachishin, V.G., and Ivanov, G.A., Spawning migration phenology of the spadefoot toad Pelobates fuscus (Pelobatidae, Amphibia) in the valley of the Medveditsa River (Saratov oblast), Biol. Bull. (Moscow), 2015, vol. 42, no. 10, pp. 931–936.CrossRefGoogle Scholar
  54. Yermokhin, M.V., Tabachishin, V.G., Ivanov, G.A., and Rybal’chenko, D.A., Dependence of the reproductive parameters of female Bombina bombina and Pelophylax ridibundus (Amphibia, Anura) on the dimensional and weight characteristics, Sovr. Gerpetol., 2016, vol. 16, nos. 1/2, pp. 3–13.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • M. V. Yermokhin
    • 1
  • V. G. Tabachishin
    • 1
    • 2
  • G. A. Ivanov
    • 1
  1. 1.Chernyshevskii Saratov National Research State UniversitySaratovRussia
  2. 2.Severtsov Institute of Ecology and Evolution, Saratov BranchRussian Academy of SciencesSaratovRussia

Personalised recommendations