Advertisement

Biology Bulletin

, Volume 44, Issue 10, pp 1272–1277 | Cite as

The Mercury Content and Antioxidant System in Insectivorous Animals (Insectivora, Mammalia) and Rodents (Rodentia, Mammalia) of Various Ecogenesis Conditions

  • E. P. Antonova
  • V. A. Ilyukha
  • V. T. Komov
  • E. A. Khizhkin
  • S. N. Sergina
  • V. A. Gremyachikh
  • T. B. Kamshilova
  • V. V. Belkin
  • A. E. Yakimova
Article
  • 12 Downloads

Abstract

This study is aimed at analyzing the total mercury in the tissues of mammals adapted to a semiaquatic or subterranean lifestyle and at analyzing the possible role of their antioxidant system in heavy metal detoxication. The water shrew Neomis fodiens Pennant, 1771, European mole Talpa europaea Linnaeus, 1758, muskrat Ondatra zibethicus Linnaeus, 1766, and water vole Arvicola terrestris Linnaeus, 1758 were the species under study. Our results indicate that mercury accumulation in the tissue depends on the age, tissue type, and diet of the species. The highest mercury content was recorded in water shrew tissues compared to other species. Age-dependent accumulation of the toxicant in the animals is reported. A correlation between mercury accumulation and catalase activity in the kidneys of the animals studied was found.

Keywords

Neomys fodiens Talpa europaea Arvicola terrestris Ondatra zibethicus mercury antioxidant system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avagyan, A.A., Ecology and distribution of water shrew Neomys fodiens in Armenia, Biol. Zh. Arm., 2009, no. 2 (61), pp. 49–52.Google Scholar
  2. Bears, R.F. and Sizer, I.N., A spectral method for measuring the breakdown of hydrogen peroxide by catalase, J. Biol. Chem., 1952, vol. 195, no. 1, pp. 133–140.Google Scholar
  3. Brookens, T.J., O’Hara, T.M., Taylor, R.J., Bratton, G.R., and Harvey, J.T., Total mercury body burden in Pacific harbor seal, Phoca vitulina richardii, pups from central California, Mar. Pollut. Bull., 2008, vol. 56, pp. 27–41.CrossRefPubMedGoogle Scholar
  4. Butler, P.J. and Jones, D.R., Physiology of diving of birds and mammals, Physiol. Rev., 1997, vol. 77, no. 3, pp. 837–899.CrossRefPubMedGoogle Scholar
  5. Cristol, D., Brasso, R.L., Condon, A.M., Fovargue, R.E., Friedman, S.L., Hallinger, K.K., Monroe, A.P., and White, A.E., The movement of aquatic mercury through terrestrial food webs, Science, 2008, vol. 320, p. 335.CrossRefPubMedGoogle Scholar
  6. Eticheskaya ekspertiza biomeditsinskikh issledovanii. Prakticheskie rekomendatsii (Ethical Expertise of Biomedical Research. Practical Recommendations), Belousov, Yu.B., Eds., Moscow: Ros. Obshch. Klin. Issled., 2005.Google Scholar
  7. Filho, W.D., Sell, F., Ribeiro, L., Ghislandi, M., Carrasquedo, F., Fraga, C.G., Wallauer, J.P., Simões-Lopes, P.C., and Uhart, M.M., Comparison between the antioxidant status of terrestrial and diving mammals, Comp. Biochem. Physiol., 2002, vol. 133, no. 3, pp. 885–892.CrossRefGoogle Scholar
  8. Gabaidullin, A.G., Il’ina, E.M., Ryzhov, V.V., and Khalitova, R.Ya., Okhrana okruzhayushchei sredy ot rtutnogo zagryazneniya (Environmental Protection from Mercury Pollution), Kazan: Izd. Magarif, 1999.Google Scholar
  9. Galantsev, V.P., Evolyutsiya adaptatsii nyryayushchikh zhivotnykh. Ekologo-i morfofiziologicheskie aspekty (Evolution of Adaptations of Diving Animals: Ecological and Morphophysiological Aspects), Leningrad: Nauka, Leningr. Otd., 1977.Google Scholar
  10. Hsu, M.J., Selvaraj, K., and Agoramoorthy, G., Taiwan’s industrial heavy metal pollution threatens terrestrial biota, Environ. Pollut., 2006, vol. 143, no. 2, pp. 327–334.CrossRefPubMedGoogle Scholar
  11. Ivanova, E.S., Patterns of accumulation and distribution of mercury in the components of terrestrial ecosystems of the Vologda oblast, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Borok, 2013.Google Scholar
  12. Kharadov, A.V. and Kustareva, L.A., Animal feeds in nutrition of muskrat Ondatra zibethicus L., Byul. MOIP. Otd. Biol., 2012, vol. 117, no. 6, pp. 3–10.Google Scholar
  13. Khizhkin, E.A., Ilyukha, V.A., Komov, V.T., Parkalov, I.V., Il’ina, T.N., Baishnikova, I.V., Sergina, S.N., Gremyachikh, V.A., Kamshilova, T.B., and Stepina, E.S., Speciesspecific features of mercury content in organs of carnivorous mammals of different ecogenesis, Tr. Karel. Nauch. Tsentra RAN, 2012, no. 2, pp. 147–153.Google Scholar
  14. Komov, V.T., Gremyachikh, V.A., Sapel’nikov, S.F., and Udodenko, Yu.G., The content of mercury in soils and small mammals of different biotopes of the Voronezh Reserve, in Rtut’ v biosfere: ekologo-geokhimicheskie aspekty: materialy mezhdunar. simp. (Mercury in the Biosphere: Ecological-Geochemical Aspects, Proc. Int. Symp.), Moscow: Inst. Geokhim. Analit. Khim. im. V.I. Vernadskogo RAN, 2010, pp. 281–286.Google Scholar
  15. Krynski, A., Kaluzinski, J., Wlazeiko, M., and Adamowski, A., Contamination of roe deer by mercury compounds, Acta Theriol., 1982, vol. 27, pp. 499–507.CrossRefGoogle Scholar
  16. Laperdina, T.G., Opredelenie rtuti v prirodnykh vodakh (Determination of Mercury in Natural Waters), Novosibirsk: Nauka, Sib. Otd., 2000.Google Scholar
  17. Lund, B.O. and Miller, D.M., Studies in Hg-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria, Biochem. Pharmacol., 1993, vol. 45, no. 10, pp. 2017–2024.CrossRefPubMedGoogle Scholar
  18. Ma, W.C., Denneman, W., and Faber, J., Hazardous exposure of ground-living small mammals to Cd and Pb in contaminated terrestrial ecosystems, Arch. Environ. Contam. Toxicol., 1991, vol. 20, no. 2, pp. 266–270.CrossRefPubMedGoogle Scholar
  19. Marklund, S.L. and Karlsson, K., Extracellular superoxide dismutase, distribution in the body and therapeutic implications, in Antioxidants in Therapy and Preventive Medicine, New York: Plenum Press, 1990, pp. 1–4.Google Scholar
  20. Martiniaková, M., Omelka, R., Grosskopf, B., and Jancova, A., Yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) as zoomonitors of environmental contamination at a polluted area in Slovakia, Acta Veterinaria Scandinavica, 2010, vol. 52, no. 1, pp. 58–68.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Misra, H.P. and Fridovich, I., The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem., 1972, vol. 247, no. 10, pp. 3170–3175.PubMedGoogle Scholar
  22. Mozaffarian, D. and Rimm, E.B., Fish intake, contaminants, and human health evaluating the risks and the benefits, J. Am. Med. Assoc., 2006, vol. 296, no. 15, pp. 1885–1899.CrossRefGoogle Scholar
  23. Nemova, N.N., Biokhimicheskaya adaptatsiya nakopleniya rtuti u ryb (Biochemical Adaptations of Mercury Accumulation in Fish), Moscow: Nauka, 2005.Google Scholar
  24. Reinecke, S.A., Prinsloo, M.W., and Reinecke, A.J., Resistance of Eisenia fetida (Oligochaeta) to cadmium after longterm exposure, Ecotoxicol. Environ. Safety, 1999, vol. 42, no. 1, pp. 75–80.CrossRefPubMedGoogle Scholar
  25. Scheuhammer, A.M., Meyer, M.W., Sandheinrich, M.B., and Murray, M.W., Effects of environmental methylmercury on the health of wild birds, mammals, and fish, AMBIO, 2007, vol. 36, no. 1, pp. 12–18.PubMedGoogle Scholar
  26. Skurikhin, V.N. and Dvinskaya, L.M., Determination of alpha-tocopherol and retinol in blood plasma of farm animal by microcolumn high-performance liquid chromatography, Sel’skokhoz. Biol., 1989, no. 4, pp. 127–129.Google Scholar
  27. Sokolov, F.P., Ecological features of Eurasian mole (Talpa europaea L.) of the Upper Volga region, Extended Abstract of Cand. Sci. (Biol) Dissertation, Novosibirsk, 1984.Google Scholar
  28. Strom, S.M., Total mercury and methylmercury residues in river otters (Lutra canadensis) from Wisconsin, Arch. Environ. Contam. Toxicol., 2008, vol. 54, no. 3, pp. 546–554.CrossRefPubMedGoogle Scholar
  29. Talmage, S.S. and Walton, B.T., Small mammals as monitors of environmental contaminants, Rev. Environ. Contam. Toxicol., 1991, vol. 119, pp. 47–145.CrossRefPubMedGoogle Scholar
  30. Vucetich, L.M., Vucetich, J.A., Cleckner, L.B., Gorski, P.R., and Peterson, R.O., Mercury concentration in deer mouse (Peromyceus maniculatus) tissues from Isle Royale National Park, Environ. Pollut., 2001, vol. 114, pp. 113–118.CrossRefPubMedGoogle Scholar
  31. Wiener, J.G., Krabbenhoft, D.P., Heinz, G.H., and Scheuhammer, A.M., Ecotoxicology of mercury, in Handbook of Ecotoxicology, Boca Raton, FL: Lewis Publishers, 2002, pp. 409–463.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • E. P. Antonova
    • 1
  • V. A. Ilyukha
    • 1
    • 2
  • V. T. Komov
    • 3
  • E. A. Khizhkin
    • 1
  • S. N. Sergina
    • 1
  • V. A. Gremyachikh
    • 3
  • T. B. Kamshilova
    • 3
  • V. V. Belkin
    • 1
  • A. E. Yakimova
    • 1
  1. 1.Institute of Biology, Karelian Research CenterRussian Academy of SciencesKarelia Republic of KareliaRussia
  2. 2.Petrozavodsk State UniversityPetrozavodsk, Republic of KareliaRussia
  3. 3.Papanin Institute for Biology of Inland WatersRussian Academy of Sciences, BorokNekouzskii raionRussia

Personalised recommendations