Biology Bulletin

, Volume 44, Issue 9, pp 1123–1133 | Cite as

The Edible Dormouse (Glis glis, Gliridae, Rodentia) in the Periphery of Its Distribution Range: Body Size and Life History Parameters

  • V. A. Vekhnik


The body size, longevity, growth rate, and the intensity of breeding in a peripheral population of the edible dormouse from the Zhiguli Mountains are analyzed from the standpoint of life cycle theory. A breeding peculiarity of the species lies in periodically repeated years of reproductive failure, i.e., the total absence of young, seen throughout the species range. In reproductively successful years, anticipatory reproduction is observed, when the birth of posterity precedes a period of maximum food abundance. In the optimum of the distribution range, in Central and Western Europe, the mechanism of reproductive control in unfavorable years is based on the suppressing of the male reproductive activity at the beginning of the active season. In the Zhiguli population, natality regulation is rooted in mass resorption of embryos in the vast majority of females. In that population, the body size and weight are the minimum, while the difference from individuals from other populations studied may reach three times. The peculiarities of the edible dormouse biology in the peripheral population are related to the life cycle parameters. In contrast to the Central European populations, reproduction in the Zhiguli occurs every year, but in pregnant females, the death of embryos is observed in lean years. In males of that population, which are reproductively active every year, no significant costs of reproduction related to weight loss have been identified. The lower growth rate in comparison with more western European populations is shown in four age groups conventionally distinguishable based on morphometric parameters. In yearling males whose growth is not yet finished, the onset of the mating period depends on the body mass. Typically, the lifespan in the study population does not exceed four years, this being much shorter than in other populations where it lasts seven to nine years.


edible dormouse Glis glis cost of reproduction mass embryonic resorption Zhiguli Mountains Volga region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Airapet’yants, A.E., Soni (Dormice), Leningrad: Izd. Leningr. Univ., 1983.Google Scholar
  2. Andera, M., Dormice (Gliridae) in Czechoslovakia. Part I: Glis glis, Eliomys quercinus (Rodentia, Mammalia), Folia Musei rerum naturalium Bohemiae occidentalis: Zoologica, 1986, vol. 24, pp. 3–47.Google Scholar
  3. Arnold, W. and Dittami, J., Reproductive suppression in male alpine marmots, Anim. Behav., 1997, vol. 53, pp. 53–66.CrossRefGoogle Scholar
  4. Bekyürek, T., Liman, N., and Bayram, G., Diagnosis of sexual cycle by means of vaginal smear method in the chinchilla (Chinchilla lanigera), Lab. Anim., 2002, vol. 36, pp. 51–60.CrossRefPubMedGoogle Scholar
  5. Bieber, C., Population dynamics, sexual activity, and reproduction failure in the fat dormouse (Myoxus glis), J. Zool. (London), 1998, vol. 244, pp. 223–229.CrossRefGoogle Scholar
  6. Boutin, S., Wauters, L.A., McAdam, A.G., Humphries, M.M., Tosi, G., and Dhondt, A.A., Anticipatory reproduction and population growth in seed predators, Science, 2006, vol. 314, pp. 1928–1930.CrossRefPubMedGoogle Scholar
  7. Bradley, A.J., Ecophysiology in the antipodes: hormones and population regulation, in Population Ecology of Animals, Tomsk, 2006, pp. 12–14.Google Scholar
  8. Bromham, L., The genome as a life-history character: why rate of molecular evolution varies between mammal species, Phil. Trans. Roy. Soc. B: Biol. Sci., 2011, vol. 366, pp. 2503–2513.CrossRefGoogle Scholar
  9. Burgess, M., Morris, P., and Bright, P., Population dynamics of the edible dormouse (Glis glis) in England, Acta Zoologica Academiae Scientiarum Hungaricae, 2003, vol. 49, suppl. 1, pp. 27–31.Google Scholar
  10. Charnov, E.L., Reproductive effort is inversely proportional to average adult life span, Evol. Ecol. Res., 2005, vol. 7, pp. 1221–1222.Google Scholar
  11. Charnov, E.L., Evolution of life history variation among female mammals, Proc. Natl. Acad. Sci. U. S. A., 1991, vol. 88, pp. 1134–1137.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dal’, S.K., Zhivotnyi mir Armyanskoi SSR (Fauna of the Armenian SSR), Yerevan: Izd. AN ArmSSR, 1954, vol. 1.Google Scholar
  13. Descamps, S., Boutin, S., Berteaux, D., and Gaillard, J.-M., Best squirrels trade a long life for an early reproduction, Proc. Roy. Soc. Lond. B: Biol. Sci. B, 2006, vol. 273, pp. 2369–2374.CrossRefGoogle Scholar
  14. Dobson, F.S. and Oli, M.K., The life histories of orders of mammals: fast and slow breeding, Curr. Sci., 2008, vol. 95, no. 7, pp. 862–865.Google Scholar
  15. Donaurov, S.S., Popov, V.K., and Khonyakina, Z.P., Edible dormouse in the area of the Caucasian State Nature Reserve, Trudy Kavkaz. Gos. Zapov., 1938, no. 1, pp. 227–279.Google Scholar
  16. Fietz, J., Pflug, M., Schlund, W., and Tataruch, F., Influences of the feeding ecology on body mass and possible implications for reproduction in the edible dormouse (Glis glis), J. Comp. Physiol., 2005, vol. 175, pp. 45–55.CrossRefGoogle Scholar
  17. Gaisler, J., Holas, V., and Homolka, M., Ecology and reproduction of Gliridae (Mammalia) in Northern Moravia, Folia Zoologica, 1977, vol. 26, no. 3, pp. 213–228.Google Scholar
  18. Holliday, R., Longevity and fecundity in eutherian mammals, Genet. Evol. Aging, 1994, vol. 3, pp. 217–225.CrossRefGoogle Scholar
  19. Hou, C., The energy trade-off between growth and longevity, Mech. Aging Dev., 2013, vol. 134, pp. 373–380.CrossRefPubMedGoogle Scholar
  20. Hürner, H., Kryštufek, B., Sarà, M., Ribas, A., Ruch, T., et al., Mitochondrial phylogeography of the edible dormouse (Glis glis) in the western palearctic region, J. Mammal., 2010, vol. 91, pp. 233–242.CrossRefGoogle Scholar
  21. Juškaitis, R., Mammals occupying nestboxes for birds in Lithuania, Acta Zoologica Lithuanica. Biodiversity, 1999, vol. 9, no. 3, pp. 19–23.CrossRefGoogle Scholar
  22. Karpukhin, I.P., Analysis of ecological mechanism of regulation of abundance of squirrels, Vopr. Teriol. Promysl. Teriol., 1982, pp. 84–98.Google Scholar
  23. Konjevic, D., Keros, T., Brkic, H., Slavica, A., Janicki, Z., and Margaletic, J., Some histological characteristics of the fat dormice incisors in the Gorski Kotar area (Croatia), Acta Zoologica Academiae Scientiarum Hungaricae, 2003, vol. 49, suppl. 1, pp. 63–68.Google Scholar
  24. Kryštufek, B., 2010. Glis glis (Rodentia: Gliridae), Mammalian species, 2010, vol. 42, pp. 195–206.CrossRefGoogle Scholar
  25. Kryštufek, B. and Flajšman, B., Polh in Clovek, Ljubljana: Narodna in univerzitetna knjižnica, 2007.Google Scholar
  26. Kryštufek, B., Hudolkin, A., and Pavlin, D., Population biology of the edible dormouse Glis glis in a mixed montane forest in central Slovenia over three years, Acta Zoologica Academiae Scientiarum Hungaricae, 2003, vol. 49, suppl. 1, pp. 85–97.Google Scholar
  27. Kryštufek, B., Pistotnik, M., and Sedmak Casar, K., Age determination and age structure in the edible dormouse Glis glis based on incremental bone lines, Mammal Rev., 2005, vol. 35, no. 2, pp. 210–214.CrossRefGoogle Scholar
  28. Lebl, K., Kürbisch, K., Bieber, C., and Ruf, T., Energy or information? The role of seed availability for reproductive decisions in edible dormice, J. Comp. Physiol., 2010, vol. 180, pp. 447–456.CrossRefGoogle Scholar
  29. Lebl, K., Bieber, C., Adamik, P., Fietz, J., Morris, P., et al., Survival rates in a small hibernator, the edible dormouse: a comparison across Europe, Ecography, 2011, vol. 34, pp. 683–692.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lebl, K., Rotter, B., Kürbisch, K., Bieber, C., and Ruf, T., Local environmental factors affect reproductive investment in female edible dormice, J. Mammal., 2011a, vol. 92, no. 5, pp. 926–933.CrossRefGoogle Scholar
  31. Lee, T.H., Mating behavior of the Eurasian red squirrel (Sciurus vulgaris Linnaeus, 1758) in Hokkaido, Japan, Mammalia, 2001, vol. 65, no. 2, pp. 131–142.CrossRefGoogle Scholar
  32. Lobkov, V.A., Speckled Gopher of North-Western Black Sea, Odessa: Astroprint, 1999.Google Scholar
  33. Macdonald, D. and Barrett, P., Mammals of Britain and Europe, London: Harper Collins Publishers, 1993.Google Scholar
  34. Meier, M.N. and Skholl’, E.D., Ecological and faunistic essay on mammals of the Vartashenskii raion of Azerbaijan SSR, Uch. Zap. LGU, Ser. Biol. Nauk, 1955, no. 181, pp. 104–121.Google Scholar
  35. Milazzo, A., Faletta, W., and Sara, M., Habitat selection of fat dormouse (Glis glis italicus) in deciduous woodlands of Sicily, Acta Zoologica Academiae Scientiarum Hungaricae, 2003, vol. 49, suppl. 1, pp. 117–124.Google Scholar
  36. Millesi, E., Huber, S., Everts, L.G., and Dittami, J.P., Reproductive decisions in female European ground squirrels: factors affecting reproductive output and maternal investment, Ethology, 1999, vol. 105, pp. 163–175.CrossRefGoogle Scholar
  37. Morris, P.A. and Morris, M.J., A ten-year population study of the edible dormouse (Glis glis) at a single site in Britain, in Abstracts of the 7th International Dormouse Conference, Shipham, UK, 2008, p. 13.Google Scholar
  38. Naderi, G., Kaboli, M., Koren, T., Karami, M., Zupan, S., et al., Mitochondrial evidence uncovers a refugium for the fat dormouse (Glis glis Linnaeus, 1766) in Hyrcanian forests of northern Iran, Mammal. Biol., 2014, vol. 79, no. 3, pp. 202–207.CrossRefGoogle Scholar
  39. Orlova, A.F., On the problem of the sexual cycle in the little ground squirrel (Citellus pygmaeus Pall.), Uch. Zap. Leningrad. Ped. Inst. im. A.I. Gertsena, 1955, no. 110, pp. 5–21.Google Scholar
  40. Özkan, B., Türkyilmaz, T., and Kurtonur, C., The observation on reproductive biology of Glis glis (Rodentia, Myoxidae) and weight gaining of pups in the Istranca Mountains of Turkish Thrace, in Absracts of the 5th International Conference on Dormouse (Myoxidae), Gödöllo, Hungary, 2002, p. 41.Google Scholar
  41. Partridge, L., Gems, D., and Withers, D.J., Sex and death: what is the connection?, Cell, 2005, vol. 120, pp. 461–472.CrossRefPubMedGoogle Scholar
  42. Pilastro, A., Missiaglia, E., and Marin, G., Age-related reproductive success in solitarily and communally nesting female dormice, J. Zool. (London), 1996, vol. 239, pp. 601–608.CrossRefGoogle Scholar
  43. Pilastro, A., Marin, G., and Tavecchia, G., Long living and reproduction skipping in the fat dormouse, Ecology, 2003, vol. 84, pp. 1784–1792.CrossRefGoogle Scholar
  44. Popov, V.A., Mlekopitayushchie Volzhsko-Kamskogo kraya (Mammals of the Volga-Kama Region), Moscow: Izd. Akad. Nauk SSSR, 1960.Google Scholar
  45. Popova, Yu.V., The taxonomic structure of the edible dormouse Glis glis L. (Gliridae) of the Russian Plain and Caucasus, in Struktura vida u mlekopitayushchikh (Species Structure in Mammals), Moscow: Tovar. Nauch. Izd. KMK, 2015.Google Scholar
  46. Potapova, E.G., Geographical variability of the otic capsule of the dormouse Glis glis in the Caucasus region, in Mlekopitayushchie gornykh territorii (Mammals of Mountain Areas), Moscow: Tovar. Nauch. Izd. KMK, 2005.Google Scholar
  47. Pyle, P., Nur, N., Sydeman, W.J., and Esmile, S.D., Cost of reproduction and the evolution of deferred breeding in the western gull, Behav. Ecol., 1997, vol. 8, no. 2, pp. 140–147.CrossRefGoogle Scholar
  48. Roff, D.A., The Evolution of Life Histories, New York: Chapman and Hall, 1992.Google Scholar
  49. Rossolimo, O.L., Potapova, E.G., Pavlinov, I.Ya., Kruskop, S.V., and Voltsit, O.V., Soni (Myoxidae) mirovoi fauny (Dormice (Myoxidae) of the World Fauna), Moscow: Izd. Mosk. Univ., 2001.Google Scholar
  50. Ruf, T., Fietz, J., Schlund, W., and Bieber, C., High survival in poor years: life history tactics adapted to mast seeding in the edible dormouse, Ecology, 2006, vol. 87, pp. 372–381.CrossRefPubMedGoogle Scholar
  51. Sailer, M. and Fietz, J., Seasonal differences in the feeding ecology and behavior of male edible dormice (Glis glis), Mammal. Biol., 2009, vol. 74, pp. 114–124.CrossRefGoogle Scholar
  52. Samarskii, A.S. and Samarskii, S.L., Some problems of ecology of the edible dormouse in the forest-steppe Ukraine, Ekologiya, 1980, no. 1, pp. 105–107.Google Scholar
  53. Schlund, W. and Scharfe, F., Habitat fidelity and habitat utilization of an arboreal mammal (Myoxus glis) in two different habitats, Zeitschrift für Säugetierkunde, 1997, vol. 62, pp. 158–171.Google Scholar
  54. Schlund, W., Scharfe, F., and Ganzhorn, J.U., Longterm comparison of food availability and reproduction in the edible dormouse (Glis glis), Mammal. Biol., 2002, vol. 67, pp. 219–232.CrossRefGoogle Scholar
  55. Sokur, I.T., Mlekopitayushchie fauny Ukrainy i ikh khozyaistvennoe znachenie (Mammals of Ukraine and Their Economic Importance), Kiev: Radyans’ka shkola, 1960, pp. 103–105.Google Scholar
  56. Solon-Biet, S.M., Walters, K.A., Simanainen, U.K., McMahon, A.C., Ruohonen, K., et al., Macronutrient balance, reproductive function, and lifespan in aging mice, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 11, pp. 3481–3486.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Spangenberg, E.P., The edible dormouse, in Tonkopalyi suslik. Sonya-polchok. Slepysh. Burunduk (Long-Clawed Ground Squirrel. Edible Dormouse. Mole Rat. Chipmunk), Moscow, 1935, pp. 36–70.Google Scholar
  58. Speakman, J.R., The physiological costs of reproduction in small mammals, Phil. Transact. Roy. Soc. B: Biol. Sci., 2008, vol. 363, pp. 375–398.CrossRefGoogle Scholar
  59. Spitzenberger, F., Die Säugetierfauna Österreichs, Wien: Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wassertwirtschaft, 2001.Google Scholar
  60. tearns, S.C., The Evolution of Life Histories, Oxford: Oxford University Press, 1992.Google Scholar
  61. Stockard, C.R. and Papanicolaou, G.N., A rhythmical “heat period” in the guinea pig, Science, 1917, vol. 46, pp. 42–44.CrossRefPubMedGoogle Scholar
  62. Thompson, H.V., The edible dormouse (Glis glis L.) in England, 1902–1951, Proc. Zool. Soc., 1953, vol. 122, pp. 1017–1025.CrossRefGoogle Scholar
  63. Turyanin, I.I., The fauna and economic and epidemiological importance of rodents of the Transcarpathian region, in Fauna i zhivotnyi mir Sovetskikh Karpat (Fauna and Animal World of the Soviet Carpathians), Uzhgorod, 1955, pp. 21–38.Google Scholar
  64. Vekhnik, V.A., Mass resorption as an autoregulatory mechanism of cyclical reproduction of the edible dormouse (Glis glis L., 1766) on the periphery of the range, Dokl. Akad. Nauk, 2010, vol. 435, no. 3, pp. 414–416.Google Scholar
  65. Western, D., Size, life history and ecology in mammals, African J. Ecol., 1979, vol. 17, pp. 185–204.CrossRefGoogle Scholar
  66. Western, D. and Ssemakula, J., Life history patterns in birds and mammals and their evolutionary interpretation, Oecologia (Berlin), 1982, vol. 54, pp. 281–290.CrossRefPubMedGoogle Scholar
  67. Williams, G.C., Natural selection, the cost of reproduction and a refinement of Lack’s principle, Am. Nat., 1966, vol. 100, pp. 687–690.CrossRefGoogle Scholar
  68. Zera, A.J. and Harshman, L.G., The physiology of life-history trade-offs in animals, Ann. Rev. Ecol. Syst., 2001, vol. 32, pp. 95–126.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Zhiguli State Nature ReserveSamara oblast, Bakhilova PolyanaRussia

Personalised recommendations