Biology Bulletin

, Volume 44, Issue 9, pp 1046–1055 | Cite as

Breeding Success Affects the Apparent Survival of Grassland Passerines

  • D. A. Shitikov
  • T. M. Vaytina
  • T. V. Makarova
  • S. E. Fedotova
  • N. A. Krasnykh
  • Y. A. Yurchenko


The apparent adult survival rate is one of the key population parameters of migratory birds. The widely used Cormack–Jolly–Seber capture–mark–recapture model has a number of disadvantages, the main one of which is the impossibility of discerning mortality and permanent emigration. The accuracy of survival estimates can be increased using a multistate capture–mark–recapture model, with the help of which it is possible to assess the survival of successful and unsuccessful birds separately. We used this model to estimate the apparent survival rates of adults in local populations of three ground-nesting passerines: Booted Warbler (Iduna caligata), Whinchat (Saxicola rubetra), and Yellow Wagtail (Motacilla flava), all breeding on abandoned agricultural lands. We studied the reproductive success of 472 marked pairs and analyzed individual capture histories of 814 birds. The previous reproductive success was found to influence significantly the apparent survival of adults. This relation was best expressed in the Yellow Wagtail (apparent survival of successful birds, φ = 0.39 ± 0.06, vs. that of unsuccessful birds, φ = 0.19 ± 0.06) and the Whinchat (apparent survival of successful birds, φ = 0.32 ± 0.05, vs. apparent survival of unsuccessful birds, φ = 0.10 ± 0.05), but a little lower in the Booted Warbler (apparent survival of successful birds, φ = 0.33 ± 0.17, vs. apparent survival of unsuccessful birds, φ = 0.16 ± 0.13). Unsuccessful individuals leave the study area for good, while most of the successful birds return there the next year. Thus, the apparent survival rate of passerines evaluated with capture–recapture models is determined to a considerable degree by the previous reproductive success within local populations.


survival rate multistate capture–mark–recapture model reproductive success Booted Warbler Iduna caligata Whinchat Saxicola rubetra Yellow Wagtail Motacilla flava 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bardin, A.V., Evaluation of the annual persistence of adults in the population of finch (Fringilla coelebs) on the Curo nian Spit, Trudy Zool. Inst. AN SSSR, 1990, vol. 210, pp. 18–34.Google Scholar
  2. Bell, C., Climate change and spring migration in the Yellow Wagtail, Motacilla flava: an Afrotropical perspective, J. Ornithol., 2007, vol. 148, pp. 495–499.CrossRefGoogle Scholar
  3. Blackburn, E. and Cresswell, W., High winter site fidelity in a long-distance migrant: implications for wintering ecology and survival estimates, J. Ornithol., 2016, vol. 157, pp. 93–108.CrossRefGoogle Scholar
  4. Bötsch, Y., Arlettaz, R., and Schaub, M., Breeding dispersal of Eurasian Hoopoes (Upupa epops) within and between years in relation to reproductive success, sex, and age, Auk, 2012, vol. 129, pp. 283–295.CrossRefGoogle Scholar
  5. Burnham, K.P. and Anderson, D.R., Model Selection and Inference: A Practical Information Theoretic Approach, New York, USA: Springer, 2002.Google Scholar
  6. Burskii, O.V., Estimating survival of thrushes: statistical model of capture–recapture probabilities, Biol. Bull. Rev., 2011, vol. 1, no. 5, pp. 415–431.CrossRefGoogle Scholar
  7. Choquet, R., Lebreton, J.-D., Gimenez, O., Reboulet, A.-M., and Pradel, R., U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcapture data, Ecography, 2009, vol. 32, pp. 1071–1074.CrossRefGoogle Scholar
  8. Cline, M.H., Strong, A.M., Sillett, T.S., Rodenhouse, N.L., and Holmes, R.T., Correlates and consequences of breeding dispersal in a migratory songbird, Auk, 2013, vol. 130, pp. 742–752.CrossRefGoogle Scholar
  9. Cormack, R.M., Estimates of survival from the sighting of marked animals, Biometrika, 1964, vol. 51, p. 429.CrossRefGoogle Scholar
  10. Dinsmore, S.J., White, G.C., and Knopf, F.L., Advanced techniques for modeling avian nest survival, Ecology, 2002, vol. 83, pp. 3476–3488.CrossRefGoogle Scholar
  11. Doligez, B., Danchin, E., Clobert, J., and Gustafsson, L., The use of conspecific reproductive success for breeding habitat selection in a non-colonial, hole-nesting species, the collared flycatcher, J. Anim. Ecol., 1999, vol. 68, pp. 1193–1206.CrossRefGoogle Scholar
  12. Ergon, T. and Gardner, B., Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial-capture-recapture data, Methods Ecol. Evol., 2014, vol. 5, pp. 1327–1336.CrossRefGoogle Scholar
  13. Gilroy, J.J., Virzi, T., Boulton, R.L., and Lockwood, J.L., A new approach to the “apparent survival” problem: estimating true survival rates from mark–recapture studies, Ecology, 2012, vol. 93, pp. 1509–1516.CrossRefPubMedGoogle Scholar
  14. Greenwood, P.J. and Harvey, P.H., The natal and breeding dispersal of birds, Ann. Rev. Ecol. Syst., 1982, vol. 13, pp. 1–21.CrossRefGoogle Scholar
  15. Haas, C.A., Effects of prior nesting success on site fidelity and breeding dispersal: an experimental approach, Auk, 1998, vol. 115, pp. 929–936.CrossRefGoogle Scholar
  16. Hoover, J.P., Decision rules for site fidelity in a migratory bird, the Prothonotary Warbler, Ecology, 2003, vol. 84, pp. 416–430.CrossRefGoogle Scholar
  17. Ibáñez-Álamo, J.D., Magrath, R.D., Oteyza, J.C., Chalfoun, A.D., Haff, T.M., Schmidt, K.A., Thomson, R.L., and Martin, T.E., Nest predation research: recent findings and future perspectives, J. Ornithol., 2015, vol. 156, pp. 247–262.CrossRefGoogle Scholar
  18. Jolly, G.M., Explicit estimates from capture-recapture data with both death and immigration-stochastic model, Biometrika, 1965, vol. 52, p. 225.CrossRefPubMedGoogle Scholar
  19. Lebreton, J.-D., Burnham, K.P., Clobert, J., and Anderson, D.R., Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies, Ecol. Monogr., 1992, vol. 62, pp. 67–118.CrossRefGoogle Scholar
  20. Lebreton, J.-D., Nichols, J.D., Barker, R.J., Pradel, R., and Spendelow, J.A., modeling individual animal histories with Multistate Capture–Recapture Models, Adv. Ecol. Res., 2009, vol. 41, pp. 87–173.CrossRefGoogle Scholar
  21. Low, M., Arlt, D., Eggers, S., and Pärt, T., Habitat-specific differences in adult survival rates and its links to parental workload and on-nest predation, J. Anim. Ecol., 2010, vol. 79, pp. 214–224.CrossRefPubMedGoogle Scholar
  22. Mayfield, H.F., Suggestions for calculating nest success, Wilson Bull., 1975, vol. 87, pp. 456–466.Google Scholar
  23. Müller, M., Spaar, R., Schifferli, L., and Jenni, L., Effects of changes in farming of subalpine meadows on a grassland bird, the Whinchat (Saxicola rubetra), J. Ornithol., vol. 146, pp. 14–23.Google Scholar
  24. Nichols, J.D., Hines, J.E., Pollock, K.H., Hinz, R.L., and Link, W.A., Estimating breeding proportions and testing hypotheses about costs of reproduction with capture-recapture data, Ecology, 1994, vol. 75, pp. 2052–2065.CrossRefGoogle Scholar
  25. Paevskii, V.A., Demografiya ptits (Demographics of Birds), Leningrad: Nauka, 1985.Google Scholar
  26. Paevskii, V.A., Demograficheskaya struktura i populyatsionnaya dinamika pevchikh ptits (The Demographic Structure and Population Dynamics of Songbirds), St. Petersburg: Tovar. Nauch. Izd. KMK, 2008.Google Scholar
  27. Paradis, E., Baillie, S.R., Sutherland, W.J., and Gregory, R.D., Patterns of natal and breeding dispersal in birds, J. Anim. Ecol., 1998, vol. 67, pp. 518–536.CrossRefGoogle Scholar
  28. Pasinelli, G., Müller, M., Schaub, M., and Jenni, L., Possible causes and consequences of philopatry and breeding dispersal in Red-Backed Shrikes Lanius collurio, Behav. Ecol. Sociobiol., 2007, vol. 61, pp. 1061–1074.CrossRefGoogle Scholar
  29. Schaub, M. and Royle, J.A., Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models, Methods Ecol. Evol., 2014, vol. 5, pp. 1316–1326.CrossRefGoogle Scholar
  30. Schaub, M. and von Hirschheydt, J., Effect of current reproduction on apparent survival, breeding dispersal, and future reproduction in barn swallows assessed by multistate capture-recapture models, J. Anim. Ecol., 2009, vol. 78, pp. 625–635.CrossRefPubMedGoogle Scholar
  31. Schaub, M., Jakober, H., and Stauber, W., Demographic response to environmental variation in breeding, stopover and non-breeding areas in a migratory passerine, Oecologia, 2011, vol. 167, pp. 445–459.CrossRefPubMedGoogle Scholar
  32. Seber, G.A.F., A note on the multiple-recapture census, Biometrika, 1965, vol. 52, p. 249.CrossRefPubMedGoogle Scholar
  33. Sedgwick, J.A., Site fidelity, territory fidelity, and natal philopatry in Willow Flycatchers (Empidonax traillii), Auk, 2004, vol. 121, pp. 1103–1121.CrossRefGoogle Scholar
  34. Shitikov, D.A., Fedotova, S.E., and Gagieva, V.A., Nest survival, predators and breeding performance of Booted Warblers Iduna caligata in the abandoned fields of the north of European Russia, Acta Ornithologica, 2012, vol. 47, pp. 137–146.CrossRefGoogle Scholar
  35. Shitikov, D.A., Dubkova, E., and Makarova, T.V., The demography of Yellow Wagtail Motacilla flava on the abandoned fields in Northern European Russia, Bird Study, 2013, vol. 60, pp. 518–526.CrossRefGoogle Scholar
  36. Shitikov, D.A., Fedotova, S.E., Red’kin, Ya.A., and But’ev, V.T., Birds of Russia and neighboring countries: Booted Warbler Iduna caligata, Russ. Ornitol. Zh., 2014, vol. 23, no. 1070, pp. 3593–3623.Google Scholar
  37. Shitikov, D.A., Vaytina, T.M., Gagieva, V.A., and Fedchuk, D.V., Breeding success affects site fidelity in a Whinchat Saxicola rubetra population in abandoned fields, Bird Study, 2015, vol. 62, pp. 96–105.CrossRefGoogle Scholar
  38. Siriwardena, G.M., Baillie, S.R., and Wilson, J.D., Variation in the survival rates of some British passerines with respect to their population trends on farmland, Bird Study, 1998, vol. 45, pp. 276–292.CrossRefGoogle Scholar
  39. Skrade, P.D.B. and Dinsmore, S.J., Sex-related dispersal in the Mountain Plover (Charadrius montanus), Auk, 2010, vol. 127, pp. 671–677.CrossRefGoogle Scholar
  40. Taylor, C.M., Lank, D.B., and Sandercock, B.C., Using local dispersal data to reduce bias in annual apparent survival and mate fidelity, Condor, 2015, vol. 117, pp. 598–608.CrossRefGoogle Scholar
  41. Taylor, J., Determinants of variation in productivity, adult survival and recruitment in a declining migrant bird: the Whinchat (Saxicola rubetra), Ph. D. Thesis, Lancaster University, 2015, pp. 1–296.Google Scholar
  42. White, G.C., Kendall, W.L., and Barker, R.J., Multistate survival models and their extensions in program MARK, J. Wildlife Manag., 2006, vol. 70, pp. 1521–1529.CrossRefGoogle Scholar
  43. Winkler, D.W., Wrege, P.H., Allen, P.E., Kast, T.L., Senesac, P., et al., Breeding dispersal and philopatry in the Tree Swallow, Condor, 2004, vol. 106, pp. 768–776.CrossRefGoogle Scholar
  44. Xenophontos, M. and Cresswell, W., Survival and dispersal of the Cyprus Wheatear Oenanthe cypriaca, an endemic migrant, J. Ornithol., 2016, vol. 157, pp. 707–719.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • D. A. Shitikov
    • 1
  • T. M. Vaytina
    • 1
  • T. V. Makarova
    • 1
  • S. E. Fedotova
    • 1
  • N. A. Krasnykh
    • 1
  • Y. A. Yurchenko
    • 1
  1. 1.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations