Skip to main content
Log in

Stress Reaction and Biochemical Shock as Interrelated and Unavoidable Components in the Formation of High Radioresistance of the Body in Acute Hypoxia

  • Animal and Human Physiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Stress reactions with activation of the sympathetic-adrenal system due to acute hypoxia reflects the degree of sensitivity of the body to this extreme factor. Succinate dehydrogenase (SDH) activation in cells as an adaptive response to acute hypoxia is closely associated with the degree of disturbance of tissue respiration through a lack of oxygen in the tissues, including the manifestation of “biochemical shock,” which is an unavoidable component of implementation of the protective effect of radioprotectors. In experiments on mice, rats, and dogs, the correlation between the manifestation of the radioprotective effect of acute hypoxia and SDH activation in blood lymphocytes, caused primarily by adrenergic stimulation during stress reactions, is confirmed. The degree of SDH activation in blood lymphocytes by hypoxia of different origins including that induced by radioprotectors may indicate its radioprotective potential irrespective of the differences in the oxygen consumption intensity and the resistance to acute hypoxia in animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akopova, O., Nosar, V., and Gavenauskas, B., The effect of ATP-dependent potassium uptake on mitochondrial functions under acute hypoxia, J. Bioenerg. Biomembr., 2016, vol. 48, no. 1, pp. 67–75.

    Article  CAS  PubMed  Google Scholar 

  • Allalunis-Turner, M.J., Reduced bone marrow pO2 following treatment with radioprotective drugs, Radiat. Res., 1990, vol. 122, no. 3, pp. 262–267.

    Article  CAS  PubMed  Google Scholar 

  • Allalunis-Turner, M.J., Walden, T.J., and Sawich, C., Induction of marrow hypoxia by radioprotective agents, Radiat. Res., 1989, vol. 118, no. 3, pp. 581–586.

    Article  CAS  PubMed  Google Scholar 

  • Antipov, V.V., Vasin, M.V., and Gaidamakin, A.N., Species-specific reactions of succinate dehydrogenase of lym- phocytes in animals to acute hypoxic hypoxia and its relation to the radiation resistance of the body, Kosm. Biol. Aviakosm. Med., 1989, vol. 23, no. 2, pp. 63–66.

    CAS  PubMed  Google Scholar 

  • Ariza, A.C., Deen, P.M., and Robben, J.H., The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions, Front. Endocrinol. (Lausanne), 2012, vol. 3, p. 22.

    Google Scholar 

  • Bacq, Z.M., Beaumariage, M.L., and Van Caneghem, P., Importance for radioprotective effect in mammals of pharmacological and biochemical actions of cysteamine and related substances, Ann. Ist. Super Sanita, 1965, vol. 1, no. 9, pp. 639–645.

    CAS  PubMed  Google Scholar 

  • Bacq, Z.M., Beaumariage, M.L., Goutier, R., and Van Caneghem, P., The state of shock induced by cystamine and cysteamine, Br. J. Pharmacol., 1968, vol. 34, no. 1, p. 202–203.

    Google Scholar 

  • Cavanagh, H.D. and Colley, A.M., Cholinergic, adrenergic, and PGE1 effects on cyclic nucleotides and growth in cultured corneal epithelium, Metab. Pediatr. Syst. Ophthalmol., 1982, vol. 6, no. 2, pp. 63–74.

    CAS  PubMed  Google Scholar 

  • Dawson, T.L., Gores, G.J., Nieminen, A.L., Herman, B., and Lemasters, J.J., Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes, Am. J. Physiol. Cell Physiol., 1993, vol. 264, no. 4, pt 1, pp. C961–C967.

    Article  CAS  Google Scholar 

  • Duong, T.T., Witting, P.K., Antao, S.T., Parry, S.N., Kennerson, M., Lai, B., Vogt, S., Lay, P.A., and Harris, H.H., Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia re-oxygenation injury, J. Neurochem., 2009, vol. 108, no. 5, pp. 1143–1154.

    Article  CAS  PubMed  Google Scholar 

  • Feldkamp, T., Kribben, A., Roeser, N.F., Senter, R.A., Kemner, S., Venkatachalam, M.A., Nissim, I., and Weinberg, J.M., Preservation of complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules, Am. J. Physiol. Renal. Physiol., 2004, vol. 286, no. 4, pp. F749–F759.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Gomez, F.J., Galindo, M.F., Gómez-Lázaro, M., Yuste, V.J., Camello, J.X., Aguirre, N., and Jordan, J., Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway, Br. J. Pharmacol., 2005, vol. 144, no. 4, pp. 528–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firket, H. and Beaumariage, M.L., Ultrastructural modifications of mitochondria and rough endoplasmic reticulum of liver and spleen after a period of hypoxia, Virchows Arch. Cell Pathol., 1971, vol. 8, no. 4, pp. 342–349.

    CAS  Google Scholar 

  • Firket, H. and Lelièvre, P., Effect of cystamine on the respiration, oxidative phosphorylation and ultrastructure of the mitochondria of the rat, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1966, vol. 10, no. 4, pp. 403–415.

    Article  CAS  PubMed  Google Scholar 

  • Fujishiro, N., Endo, Y., Warashina, A., and Inoue, M., Mechanisms for hypoxia detection in O2-sensitive cells, Jpn. J. Physiol., 2004, vol. 54, no. 2, pp. 109–123.

    Article  CAS  PubMed  Google Scholar 

  • Gaidamakin, A.N. and Abramov, M.M., Comparison of changes in succinate dehydrogenase activity in blood lymphocytes and modification of radiosensitivity by exogenous hypoxia, Radiobiologiya, 1987, vol. 27, no. 4, pp. 524–528.

    CAS  Google Scholar 

  • Garlid, K.D. and Paucek, P., The mitochondrial potassium cycle, IUBMB Life, 2001, vol. 52, pp. 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Haass, M., Richardt, G., and Schömig, A., Potentiation of potassium-evoked noradrenaline and neuropeptide Y corelease by cardiac energy depletion: role of calcium channels and sodium-proton exchange, Naunyn Schmiedebergs Arch. Pharmacol., 1992, vol. 346, no. 4, pp. 410–418.

    Article  CAS  PubMed  Google Scholar 

  • Hakak, Y., Lehmann-Bruinsma, K., Phillips, S., Le, T., Liaw, C., Connolly, D.T., and Behan, D.P., The role of the GPR91 ligand succinate in hematopoiesis, J. Leukocyte Biol., 2009, vol. 85, no. 5, pp. 837–843.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa, A.T. and Landahl, H.D., Studies on spleen oxygen tension and radioprotection in mice with hypoxia, serotonin and p-aminopropiophenone, Radiat. Res., 1967, vol. 31, no. 3, pp. 389–399.

    Article  CAS  Google Scholar 

  • Hawkins, B.J., Levin, M.D., Doonan, P.J., Petrenko, N.B., Davis, C.W., Patel, V.V., and Madesh, M., Mitochondrial complex IIprevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss, J. Biol. Chem., 2010, vol. 285, no. 34, pp. 26494–26505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, W., Miao, F.J., Lin, D.C., Schwandner, R.T., Wang, Z., Gao, J., Chen, J.L., Tian, H., and Ling, L., Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors, Nature, 2004, vol. 429, no. 6988, pp. 188–193.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J., Bernardini, A., and Fandrey, J., Optical analysis of hypoxia inducible factor (HIF)-1 complex assembly: imaging of cellular oxygen sensing, Adv. Exp. Med. Biol., 2016, vol. 903, pp. 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D.P. and Mason, H.S., Gradients of O2 concentration in hepatocytes, J. Biol. Chem., 1978, vol. 253, no. 14, pp. 4874–4880.

    CAS  PubMed  Google Scholar 

  • Kaasik, A., Safiulina, D., Zharkovsky, A., and Veksler, V., Regulation of mitochondrial matrix volume, Am. J. Physiol. Cell Physiol., 2007, vol. 292, no. 1, pp. C157–C163.

    Article  CAS  PubMed  Google Scholar 

  • Kawada, T., Yamazaki, T., Akiyama, T., Sato, T., Shishido, T., Inagaki, M., Tatewaki, T., Yanagiya, Y., Sugimachi, M., and Sunagawa, K., Cyanide intoxication induced exocytotic epinephrine release in rabbit myocardium, J. Auton. Nerv. Syst., 2000, vol. 80, no. 3, pp. 137–141.

    Article  CAS  PubMed  Google Scholar 

  • Kehrer, J.P. and Lund, L.G., Cellular reducing equivalents and oxidative stress, Free Radic. Biol. Med., 1994, vol. 17, no. 1, pp. 65–75.

    Article  CAS  PubMed  Google Scholar 

  • Kondrasheva, M.N., Activation of succinate dehydrogenase as the basis for anaerobic performance and resistance to hypoxia, in Mitokhondrial’nye protsessy vo vremennoi organizatsii zhiznedeyatel’nosti (Mitochondrial Processes in the Temporal Organization of Life Activity), Kondrasheva, M.N. and Maevskii, E.I., Eds., Pushchino, 1978, pp. 6–12.

    Google Scholar 

  • Kondrasheva, M.N. and Chagovets, N.R., Succinic acid in the skeletal muscles during intense load and relaxation, Dokl. Akad. Nauk SSSR, 1971, vol. 198, no. 1, pp. 243–246.

    Google Scholar 

  • Kondrasheva, M.N., Maevskii, E.I., Babayan, E.I., and Akhmerov, R.N., Adaptation to hypoxia by switching metabolism to the conversion of succinic acid, in Mitokhondriya. Biokhimiya i ul’trastruktura (Mitochondrion: Biochemistry and Ultrastructure), Moscow: Nauka, 1973, pp. 112–129.

    Google Scholar 

  • Kondrashova, M., Zakharchenko, M., and Khunderyakova, N., Preservation of the in vivo state of mitochondrial network for ex vivo physiological study of mitochondria, Int. J. Biochem. Cell Biol., 2009, vol. 41, no. 10, pp. 2036–2050.

    Article  CAS  PubMed  Google Scholar 

  • Konstantinova, M.M. and Graevskii, E.I., Tissue hypoxia as a mechanism of radioprotective action of adrenaline, heroin, and morphine, Dokl. Akad. Nauk SSSR, 1960, vol. 133, pp. 1427–1430.

    Google Scholar 

  • Koroleva, L.V. and Vasin, M.V., Effect of adrenaline on the succinate dehydrogenase activity of peripheral blood lymphocytes of rats following exposure to ionizing radiation, Radiobiologiya, 1988, vol. 28, no. 2, pp. 228–230.

    CAS  Google Scholar 

  • Kraus-Friedmann, N., Glucagon-stimulated respiration and intracellular Ca2+, FEBS Lett., 1986, vol. 201, no. 1, pp. 133–136.

    Article  CAS  PubMed  Google Scholar 

  • Kulinskii, V.I., Kuntsevich, A.K., and Trufanova, L.V., Activation succinate dehydrogenation in rat liver by noradrenaline, cAMP and acute cooling, Byul. Eksp. Biol. Med., 1981, vol. 92, no. 8, pp. 33–34.

    CAS  Google Scholar 

  • Kurz, T., Richardt, G., Seyfarth, M., and Schömig, A., Nonexocytotic noradrenaline release induced by pharmacological agents or anoxia in human cardiac tissue, Naunyn Schmiedebergs Arch. Pharmacol., 1996, vol. 354, no. 1, pp. 7–16.

    Article  CAS  PubMed  Google Scholar 

  • Kvetnansky, R., Lu, X., and Ziegler, M.G., Stress-triggered changes in peripheral catecholaminergic systems, Adv. Pharmacol., 2013, vol. 68, pp. 359–397.

    Article  CAS  PubMed  Google Scholar 

  • Laszczyca, P., The activity of mitochondrial enzymes in the muscles of rats subjected to physical training and subchronical intoxication with lead and zinc, Acta Physiol. Pol., 1989, vol. 40, nos. 5–6, pp. 544–551.

    CAS  PubMed  Google Scholar 

  • Lehninger, A.L. and Remmert, L.F., An endogenous uncoupling and swelling agent in liver mitochondria and its enzymic formation, J. Biol. Chem., 1959, vol. 234, pp. 2459–2464.

    CAS  PubMed  Google Scholar 

  • Lehninger, A.L. and Schneider, M., Mitochondrial swelling induced by glutathione, J. Biophys. Biochem. Cytol., 1959, vol. 5, no. 1, pp. 109–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelièvre, P., Action of cystamine and cysteamine on the oxygen consumption and coupled oxidative phosphorylation of the liver mitochondria of rats, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1965, vol. 9, pp. 107–113.

    Article  PubMed  Google Scholar 

  • Luk’yanova, L.D., Mitochondrial signaling pathways in adaptation to hypoxia, Fiziol. Zh. im. I.M. Sechenova, 2013, vol. 59, no. 6, pp. 141–154.

    Google Scholar 

  • Maevskii, E.I., Grishina, E.V., Rozenfel’d, A.S., Zyakun, A.M., Kondrashova, M.N., and Vereshchagina, V.M., Anaerobic conversion of succinate and enhancement of its oxidation. Possible mechanisms of cellular adaptation to oxygen deficiency, Biofizika, 2000, vol. 45, no. 3, pp. 509–513.

    CAS  PubMed  Google Scholar 

  • Van der Meer, C. and van Bekkum, D.W., The mechanism of radiation protection by hystamine and other biological amines, Int. J. Radiat. Biol., 1959, vol. 1, pp. 5–12.

    Google Scholar 

  • Van der Meer, C. and van Bekkum, D., A study on the mechanism of radiation protection by 5-hydroxytryptamine and tryptamine, Int. J. Radiat. Biol., 1961, vol. 4, pp. 105–110.

    Google Scholar 

  • Mohan, C., Memon, R.A., and Bessman, S.P., Differential effects of insulin, epinephrine, and glucagon on rat hepatocyte mitochondrial activity, Arch. Biochem. Biophys., 1991, vol. 287, no. 1, pp. 18–23.

    Article  CAS  PubMed  Google Scholar 

  • Mojet, M.H., Mills, E., and Duchen, M.R., Hypoxiainduced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration, J. Physiol., 1997, vol. 504, no. 1, pp. 175–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nartsissov, R.P., The use of N-nitrotetrazolium violet for quantitative cytometry of dehydrogenases in human lymphocytes, Arkh. Anat. Gistol. Embriol., 1969, vol. 56, no. 5, pp. 85–91.

    CAS  PubMed  Google Scholar 

  • Newmeyer, D.D. and Ferguson-Miller, S., Mitochondria: releasing power for life and unleashing the machineries of death, Cell, 2003, vol. 112, no. 4, pp. 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Ovakimov, V.N. and Yarmonenko, S.P., Adaptation to hypoxia as a factor modifying its radioprotective effect, Med. Radiol., 1974, vol. 19, no. 6, pp. 49–53.

    CAS  Google Scholar 

  • Pistollato, F., Abbadi, S., Rampazzo, E., Viola, G., Della, Puppa A., Cavallini, L., Frasson, C., Persano, L., Panchision, D.M., and Basso, G., Hypoxia and succinate antagonize 2-deoxyglucose effect glioblastoma, Biochem. Pharmacol., 2010, vol. 80, no. 10, pp. 1517–1527.

    Article  CAS  PubMed  Google Scholar 

  • Richardt, G., Lumpp, U., Haass, M., and Schömig, A., Propranolol inhibits nonexocytotic noradrenaline release in myocardial ischemia, Naunyn Schmiedebergs Arch. Pharmacol., 1990, vol. 341, nos. 1–2, pp. 50–55.

    CAS  PubMed  Google Scholar 

  • Schömig, A., Haass, M., and Richardt, G., Catecholamine release and arrhythmias in acute myocardial ischaemia, Eur. Heart J., 1991, vol. 12, suppl. F, pp. 38–47.

    Article  PubMed  Google Scholar 

  • Schömig, A., Richardt, G., and Kurz, T., Sympatho-adrenergic activation of the ischemic myocardium and its arrhythmogenic impact, Herz, 1995, vol. 20, no. 3, pp. 169–186.

    PubMed  Google Scholar 

  • Sivaramakrishnan, S. and Ramasarma, T., Noradrenaline stimulates succinate dehydrogenase through beta-adrenergic receptors, Indian J. Biochem. Biophys., 1983a, vol. 1983, no. 20, pp. 1–16.

    Google Scholar 

  • Sivaramakrishnan, S., Panini, S.R., and Ramasarma, T., Activation of succinate dehydrogenase in isolated mitochondria by noradrenaline, Indian J. Biochem. Biophys., 1983b, vol. 1983, no. 20, pp. 1–23.

    Google Scholar 

  • Skrede, S., Effects of cystamine and cysteamine on the adenosine- triphosphatase activity and oxidative phosphorylation of rat-liver mitochondria, Biochem. J., 1966, vol. 98, no. 3, pp. 702–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souvannakitti, D., Kumar, G.K., Fox, A., and Prabhakar, N.R., Neonatal intermittent hypoxia leads to long-lasting facilitation of acute hypoxia-evoked catecholamine secretion from rat chromaffin cells, J. Neurophysiol., 2009, vol. 101, no. 6, pp. 2837–2846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushakov, I.B., Abramov, M.M., Khunandov, L.L., and Zuev, V.G., Radioprotektory i gipoksiya: mekhanizmy kombinirovannoi zashchity (Radioprotectors and Hypoxia: Mechanisms of Combined Protection), Moscow: Vooruzhenie. Politika. Konversiya, 1996.

    Google Scholar 

  • Vasin, M.V., Comparative characteristics of the modification of radiosensitivity of mice and rats by a hypoxic mixture, Radiobiologiya, 1986, vol. 26, no. 4, pp. 563–565.

    CAS  Google Scholar 

  • Vasin, M.V., Classification of radioprotective agents as a reflection of the current state and prospects of development of radiation pharmacology?, Radiats. Biol. Radioekol., 2013, vol. 53, no. 5, pp. 459–467.

    CAS  Google Scholar 

  • Vasin, M.V. and Ushakov, I.B., Comparative efficacy and the window of radioprotection for adrenergic and serotoninergic agents and aminothiols in experiments with small and large animals, J. Radiat. Res., 2015, vol. 56, no. 1, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Vasin, M.V., Antipov, V.V., Suvorov, N.N., Abramov, M.M., and Gorelova, N.V., Characteristics of the role of the hydroxyl group in serotonin in the pharmacological and antiradiation effect of serotonin, Radiobiologiya, 1984, vol. 24, no. 3, pp. 411–414.

    CAS  Google Scholar 

  • Vasin, M.V., Suvorov, N.N., Abramov, M.M., and Gordeev, E.N., Changes in the therapeutic spectrum with respect to the pharmacological and radioprotective activity after O-alkylation of serotonin and 5(2-hydroxyethoxytryptamine), Radiobiologiya, 1987, vol. 27, no. 5, pp. 700–703.

    CAS  Google Scholar 

  • Vasin, M.V., Petrova, T.V., and Koroleva, L.V., The effect of adrenaline on the cyclic nucleotides and succinate dehydrogenase activity, Fiziol. Zh. SSSR im. I.M. Sechenova, 1991, vol. 77, no. 4, pp. 106–108.

    CAS  PubMed  Google Scholar 

  • Vasin, M.V., Chernov, G.A., Koroleva, L.V., L’vova, T.S., Abramov, M.M., Antipov, V.V., and Suvorov, N.N., Mechanism of the radiation-protective effect of indralin, Radiats. Biol. Radioekol., 1996, vol. 36, no. 1, pp. 36–46.

    CAS  Google Scholar 

  • Vasin, M.V., Antipov, V.V., Chernov, G.A., Abramov, M.M., Gavrilyuk, D.N., L’vova, T.S., and Suvorov, N.N., The role of the vasoconstrictor effect in realizing the radioprotective properties of indralin in experiments on dogs, Radiats. Biol. Radioekol., 1997, vol. 37, no. 1, pp. 46–55.

    CAS  Google Scholar 

  • Vasin, M.V., Ushakov, I.B., Koroleva, L.V., and Antipov, V.V., The role of cell hypoxia in the effect of radiation protectors, Radiats. Biol. Radioekol., 1999, vol. 39, nos. 2–3, pp. 238–248.

    CAS  Google Scholar 

  • Vasin, M.V., Ushakov, I.B., Semenova, L.A., and Kovtun, V.Yu., Pharmacologic analysis of the radiation-protecting effect of indraline, Radiats. Biol. Radioekol., 2001, vol. 41, no. 3, pp. 307–309.

    CAS  Google Scholar 

  • Vasin, M.V., Ushakov, I.B., Koroleva, L.V., and Stepanov, V.K., Participation of succinate dehydrogenase cell system in adaptive processes during human breathing with a hypoxic gas mixture, Aviakosm. Ekol. Med., 2002a, vol. 2002, no. 36, pp. 6–35.

    Google Scholar 

  • Vasin, M.V., Ushakov, I.B., Koroleva, L.V., Lairov, I.A., and Radchenko, S.N., In vitro response of mitochondrial succinate oxidase system to epinephrine in human blood lymphocytes from health individuals and patients with neurocirculatory dystonia, Byull. Eksp. Biol. Med., 2002b, vol. 2002, no. 134, pp. 4–393.

    Google Scholar 

  • Vasin, M.V., Ushakov, I.B., and Antipov, V.V., Potential role of catecholamine response to acute hypoxia in the modification of the effects of radioprotectors, Byull. Eksp. Biol. Med., 2015, vol. 159, no. 5, pp. 549–552.

    Article  Google Scholar 

  • Vladimirov, V.G., The effect of cystamine on oxidative phosphorylation in the spleen of irradiated rats, Byull. Eksp. Biol. Med., 1962, vol. 54, no. 11, pp. 55–58.

    CAS  Google Scholar 

  • Wittenberger, T., Schaller, H.C., and Hellebrand, S., An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors, J. Mol. Biol., 2001, vol. 307, pp. 799–813.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Yu, D., Fan, H.H., Feng, Y., Hu, L., Zhang, W.Y., Zhou, K., and Mo, X.M., Triggering the succinate receptor GPR91 enhances pressure overload-induced right ventricular hypertrophy, Int. J. Clin. Exp. Pathol., 2014, vol. 7, no. 9, pp. 5415–5428.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yarmonenko, S.P. and Epshtein, I.M., Oxygen effect and the intracellular oxygen content (the adaptation hypothesis), Radiobiologiya, 1977, vol. 17, no. 3, pp. 323–335.

    CAS  Google Scholar 

  • Yarmonenko, S.P., Rampan, Yu.I., Karochkin, B.B., Berezhnova, L.I., Ovakimov, V.G., and Aupanetyan, G.M., Oxygen tension kinetics in critical organs under the effects of mexamine in comparison with its radiation-protective effect, Radiobiologiya, 1970, vol. 10, no. 6, pp. 700–705.

    CAS  Google Scholar 

  • Yarmonenko, S.P., Vainson, A.A., and Magdon, E., Kislorodnyi effekt i luchevaya terapiya opukholei (Oxygen Effect and Radiation Therapy of Tumors), Moscow: Meditsina, 1980.

    Google Scholar 

  • Yuhas, J.M., Proctor, J.O., and Smith, L.H., Some pharmacologic effects of WR-2721: their role in toxicity and radioprotection, Radiat. Res., 1973, vol. 54, pp. 222–233.

    Article  CAS  PubMed  Google Scholar 

  • Zakharchenko, M.V., Zakharchenko, A.V., Khunderyakova, N.V., Tutukina, M.N., Simonova, M.A., Vasilieva, A.A., Romanova, O.I., Fedotcheva, N.I., Litvinova, E.G., Maevsky, E.I., Zinchenko, V.P., Berezhnov, A.V., Morgunov, I.G., Gulayev, A.A., and Kondrashova, M.N., Burst of succinate dehydrogenase and α-ketoglutarate dehydrogenase activity in concert with the expression of genes coding for respiratory chain proteins underlies shortterm beneficial physiological stress in mitochondria, Int. J. Biochem. Cell Biol., 2013, vol. 45, no. 1, pp. 190–200.

    Article  CAS  PubMed  Google Scholar 

  • Zepeda, A.B., Pessoa, A., Castillo, R.L., Figueroa, C.A., Pulgar, V.M., and Farías, J.G., Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS, Cell Biochem. Funct., 2013, vol. 31, no. 6, pp. 451–459.

    Article  CAS  PubMed  Google Scholar 

  • Zherebchenko, P.G. and Suvorov, N.N., The relationship between the radioprotective and vasoconstrictor effects of indolylalkylamines, Radiobiologiya, 1963, vol. 3, pp. 595–602.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Vasin.

Additional information

Original Russian Text © M.V. Vasin, I.B. Ushakov, I.V. Bukhtiyarov, 2018, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2018, No. 1, pp. 83–92.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasin, M.V., Ushakov, I.B. & Bukhtiyarov, I.V. Stress Reaction and Biochemical Shock as Interrelated and Unavoidable Components in the Formation of High Radioresistance of the Body in Acute Hypoxia. Biol Bull Russ Acad Sci 45, 73–81 (2018). https://doi.org/10.1134/S1062359017060115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359017060115

Navigation