Skip to main content
Log in

The Mechanoreceptor Organs of the Lamellirostral Birds (Anseriformes, Aves)

  • Zoology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Two types of surface tactile epidermal formations are identified in the bill tip organ of 11 species of lamellirostral birds. Their density arrangement and ratio in the mandible and maxilla are greater in dabbling ducks (filter-feeder species) than in herbivorous and in actively pursuing species. The length and proportions of the connective tissue tubules enclosing the encapsulated mechanoreceptors in filter-feeder species differ significantly from the others. The vibroreceptor endings are significantly more numerous in filter-feeder species and the touch endings in nonfiltering ones. The latter are smaller in the filter-feeder species. Within the walls of the connective tissue tubules, tactile epitheliocytes are registered for the first time. The structure of keratinocytes separating epidermal papillae of the bill tip organ apparently ensures their mobility. The bill tip organ is probably involved in the communication process of waterfowl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avilova, K.V., The structure of the tactile bill-tip organ in three anseriform species, in Mater. Vsesoyuz. konf. po migratsiyam ptits (Proc. All-Union Conf. on Bird Migrations), Moscow: Izd. MGU, 1975, part II, pp. 157–159.

    Google Scholar 

  • Avilova, K.V., Ecological and morphological features of the bill-tip organ of four anseriform species, Vestn. Mosk. Univ., Ser. Biol., 1977, no. 3, pp. 44–49.

    Google Scholar 

  • Avilova, K.V., Mechanoreceptor structures of animals in the light of the signal biological field concept by N.P. Naumov, in Biologicheskoe signal’noe pole mlekopitayushchikh (The Biological Signal Field of Mammals), Nikol’skii, A.A. and Rozhnov, V.V., Eds., Moscow: KMK, 2013, pp. 216–223.

    Google Scholar 

  • Berkhoudt, H., The epidermal structure of the bill tip organ in ducks, Nether. J. Zool., 1976, vol. 26, pp. 561–566.

    Article  Google Scholar 

  • Berkhoudt, H., The morphology and distribution of cutaneous mechanoreceptors (Herbst and Grandry corpuscles) in bill and tongue of the mallard (Anas platyrhynchos L.), Nether. J. Zool., 1980, vol. 30, pp. 1–34.

    Article  Google Scholar 

  • Bianki, V.V., Dzerzhinskii, F.Ya., and Grintsevichene, T.I., Morphofunctional features of the mouth apparatus of the smew related to its trophic adaptations, Zool. Zh., 2013, vol. 92, no. 5, pp. 577–587.

    Google Scholar 

  • Flow Sensing in Air and Water: Behavioral, Neural and Engineering Principles of Operation, Bleckman, H., Mogdans, J., and Coombs, S.L., Eds., Berlin, Heidelberg: Springer Verlag, 2014.

  • Catania, K.C., Epidermal sensory organs of moles, shrewmoles, and desmans: a study of the family Talpidae with comments on the function and evolution of Eimer’s organ, Brain Behav. Evol., 2000, vol. 56, pp. 146–174.

    Article  CAS  PubMed  Google Scholar 

  • Fedorenko, A.G., Lebedeva, N.V., and Avilova, K.V., Ultrastructural study of the mechanoreceptor bill-tip organ of the mallard duck, in Mater. VI Mezhdunar. nauch.-prakt. konf. “Aktual’nye problemy biologii, nanotekhnologii i meditsiny”, Rostov-na-Donu, 1-3 oktyabrya 2015 g. (Proc. VI Int. Sci.-Practic., Conf. “Actual Problems of Biology, Nanotechnology, and Medicine,” Rostov-on-Don, October 1–3, 2015), Rostov-on-Don, 2015, pp. 284–286.

    Google Scholar 

  • Fernandez-Juricic, E., Sensory basis of vigilance behavior in birds: synthesis and future prospects, Behav. Proc., 2012, vol. 89, pp. 143–152.

    Article  Google Scholar 

  • Goodman, D.C. and Fisher, H., Functional Morphology of the Feeding Apparatus in Waterfowl, Aves: Anatidae, Carbondale: Southern Illinois Univ. Press, 1962.

    Google Scholar 

  • Gottschaldt, K.-M., Structure and function of avian somatosensory receptors, in Form and Function in Birds, King, A.S. and McLelland, J., Eds., London: Acad. Press, 1985, vol. 3, pp. 375–461.

    Google Scholar 

  • Gottschaldt, K.-M. and Lausmann, S., The peripheral morphological basis of tactile sensibility in the beak of geese, Cell. Tiss. Res., 1974, vol. 153, pp. 477–496.

    Article  CAS  Google Scholar 

  • Gottschaldt, K.-M., Andres, K.H., and von During, M., Fine structures and function of the bill tip organ in geese, Neurosci. Abstr., 1976, vol. 2, p. 1912.

    Google Scholar 

  • Goujon, E., Sur un appareil de corpuscles tactiles situe dans le bec des perroquets, J. Anat. Physiol., 1869, vol. 6, pp. 449–455.

    Google Scholar 

  • Grandry, M., Recherches sur les corpuscules de Pacini, J. Anat. Physiol., 1869, vol. 6, pp. 390–395.

    Google Scholar 

  • Grim, M. and Halata, Z., Developmental origin of avian Merkel cells, Anat. Embriol., 2000, vol. 202, pp. 401–410.

    Article  CAS  Google Scholar 

  • Halata, Z. and Grim, M., Sensory nerve endings in the beak skin of Japanese quail, Anat. Embriol., 1993, vol. 187, pp. 131–138.

    Article  CAS  Google Scholar 

  • Halata, Z., Grim, M., and Bauman, K., Friedrich Sigmund Merkel and his “Merkel cell,” morphology, development, and physiology: review and new results, Anatom. Rec. Pt A: Discover. Mol. Cell. Evol. Biol., 2003, vol. 271, pp. 225–239.

    Article  Google Scholar 

  • Herbst, G., Die Pacinichen Korper und ihre Bedeutung. Eine Beitrag zur Kenntnis der Nervenprimitivfasern, Göttingen: Vanden hoeck and Ruprecht, 1848.

    Google Scholar 

  • Ivanov, V.P., Fine structure of mechanoreceptors of insect hairs, in Mekhanizmy raboty retseptornykh elementov organov chuvstv (The Mechanisms of Functioning of Receptor Elements of Sense Organs), Leningrad: Nauka, 1973, pp. 140–146.

    Google Scholar 

  • Ivanov, V.P., Organy chuvstv nasekomykh i drugikh bespozvonochnykh (The Sense Organs of Insects and Other Invertebrates), Moscow: Nauka, 2000.

    Google Scholar 

  • Koblik, E.A. and Red’kin, Ya.A., The basic checklist of waterfowl (Anseriformes) of the world fauna, Kazarka, 2004, no. 10, pp. 15–46.

    Google Scholar 

  • Kondrat’ev, A.V., Foraging ecology of geese in the Arctic and on the way to it (review), Kazarka, 2002, no. 8, pp. 79–99.

    Google Scholar 

  • Kulikov, V.F. and Rutovskaya, M.V., Some features of the structure of the sensory organs and orientation of the Russian desman (Desmana moschata L., 1758), Sens. Sist., 2013, vol. 27, no. 3, pp. 238–245.

    Google Scholar 

  • Lange, B., Integument der Sauropsiden, in Handbuch der vergleichenden Anatomie der Wirbeltiere, Goppert, E., Kallius, E., Lubosch, W., and Bolk, L., Eds., Berlin: Urban Shwarzenberg, 1931, vol. 1, pp. 375–448.

    Google Scholar 

  • Lema, S.C. and Kelly, J.T., The production of communication signals at the air-water and water-substrate boundaries, J. Comp. Psychol., 2002, vol. 116, pp. 145–150.

    Article  PubMed  Google Scholar 

  • Li, Z. and Clarke, J.A., The craniolingual morphology of waterfowl (Aves, Anseriformes) and its relationship with feeding mode revealed through contrast-enhanced X-ray computed tomography and 2D morphometrics, Evol. Biol., 2016, vol. 43, pp. 12–25.

    Article  Google Scholar 

  • Lisney, T.J., Stecyk, K., Kolominsky, J., Schmidt, B.K., Corfield, J.R., Iwaniuk, A.N., and Wylie, D.R., Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes, J. Comp. Physiol. A, 2013, vol. 199, pp. 385–402.

    Article  Google Scholar 

  • Lomadze, N.Kh., Lebedeva, N.V., Kolomeitsev, S.G., Govorunov, V.N., and Kulikov, V.V., Management of populations of game waterfowl species: a case study of the Veselovskii Reservoir, Vestn. Yuzhn. Nauch. Tsentra, 2009, vol. 5, no. 4, pp. 79–85.

    Google Scholar 

  • Ludicke, M., Aufbau and abnutzung der hornzahne und hornwulste der vogelshnabels, Z. Morphol. Okol. Tiere, 1940, vol. 37, pp. 155–201.

    Article  Google Scholar 

  • Merkel, F., Die tastzellen der ente, Arch. Mikr. Anat., 1878, vol. 15, pp. 415–427.

    Article  Google Scholar 

  • Naumov, N.P., Biological signal fields and their role in the life of mammals, in Uspekhi sovremennoi teriologii (Advances in Modern Theriology), Moscow: Nauka, 1977, pp. 93–110.

    Google Scholar 

  • Nikol’skii, A.A., The concept of the biological signal field as a branch of general ecology, in Biologicheskoe signal’noe pole mlekopitayushchikh (The Biological Signal Field of Mammals), Nikol’skii, A.A. and Rozhnov, V.V., Eds., Moscow: KMK, 2013, pp. 7–11.

    Google Scholar 

  • Roskin, G.I. and Levinson, L.B., Mikroskopicheskaya tekhnika (Microscopic Technique), Moscow: Kniga po trebovaniyu, 1951.

    Google Scholar 

  • Rozenfel’d, S.B., Pitanie kazarok i gusei v rossiiskoi Arktike (Foraging of Brants and Geese in the Russian Arctic), Moscow: KMK, 2009.

    Google Scholar 

  • Rukovodstvo po fiziologii organov chuvstv nasekomykh (Guidance on the Physiology of Sense Organs of Insects), Mazokhin-Porshnyakov, G.A., Ed., Moscow: Izd. MGU, 1977.

  • Salomon, D., Carraux, P., Merot, Y., and Saurat, J.-H., Pathway of granule formation in Merkel cells: an ultrastructural study, J. Invest. Dermatol., 1987, vol. 89, pp. 362–365.

    Article  CAS  PubMed  Google Scholar 

  • Saxod, R., Ultrastructure of Merkel corpuscles and so called “transitional” cells in the white leghorn chicken, Am. J. Anat., 1978, vol. 151, pp. 453–473.

    Article  CAS  PubMed  Google Scholar 

  • Schildmacher, H., Untershung uber die Funktion der Herbstschen Korperchen, J. Ornithol., 1931, vol. 79, pp. 374–415.

    Article  Google Scholar 

  • Shilov, I.A., Ekologiya (Ecology), Moscow: Vyssh. shk., 1998.

    Google Scholar 

  • Shimohira-Yamasaki, M., Toda, S., Narisawa, Y., and Sugihara, H., Merkel cell-nerve cell interaction undergoes formation of a synapse-like structure in a primary culture, Cell. Struct. Funct., 2006, vol. 31, pp. 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Stresemann, E., Sauropsida: Aves, Kukenthal, W.G. and Krumbach, T., Eds., Handbuch der Zoologie, Bd 7/2, Berlin: Walter de Gruyter & Co, 1934.

  • Tachibana, T., The Merkel cell: recent findings and unresolved problems, Arch. Histol. Cytol., 1995, vol. 58, pp. 379–396.

    Article  CAS  PubMed  Google Scholar 

  • Tome, M.W. and Wrubleski, D.A., Underwater foraging behavior of canvasbacks, lesser scaups, and ruddy ducks, Condor, 1988, vol. 90, pp. 168–172.

    Google Scholar 

  • Truzzi, F., Marconi, A., and Pincelli, C., Neurotrophins in healthy and diseased skin, Dermato-Endocrinology, 2011, vol. 3, pp. 32–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhadan, P.M., Abdominal sensory organ in bivalves—a new model system for the study of mechanotransduction, Doctoral (Biol.) Dissertation, Vladivostok: Biol.-Pochv. Inst., DVO RAN, 2006.

    Google Scholar 

  • Zweers, G.A. and Berkhoudt, H., Recognition of food in pecking, probing and filter-feeding birds, in Acta XXCongr. Int. Ornithol. (1990), Wellington, New Zealand: Ornithological Congress Trust Board, 1991, pp. 897–901.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Avilova.

Additional information

Original Russian Text © K.V. Avilova, A.G. Fedorenko, N.V. Lebedeva, 2018, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2018, No. 1, pp. 60–70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avilova, K.V., Fedorenko, A.G. & Lebedeva, N.V. The Mechanoreceptor Organs of the Lamellirostral Birds (Anseriformes, Aves). Biol Bull Russ Acad Sci 45, 51–60 (2018). https://doi.org/10.1134/S1062359017060036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359017060036