Abstract
Based on the structure of the control region (D-loop) of mitochondrial DNA, the genetic diversity of moose of West Siberia was evaluated and their placement within the structure of current species population was determined. It was noted that the values of genetic diversity exceed the values of analogous indices obtained for western groups of the species. Three haplogroups were identified in the population structure: European–Ural, West Siberian, and American.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge: Harvard Univ. Press, 2000.
Boeskorov, G.G., Sistematika i proiskhozhdenie sovremennykh losei (Taxonomy and Origin of Modern Moose Deer), Novosibirsk: Nauka, 2001.
Danilkin, A.A., Mlekopitayushchie Rossii i sopredel’nykh regionov. Olen’i (Cervidae) (Mammals of Russia and Adjacent Regions. Deer (Cervidae)), Moscow: GEOS, 1999.
Excoffier, L. and Lischer, H.E.L., Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Res., 2010, vol. 10, pp. 564–567.
Filonov, K.P., Los’ (Moose), Moscow: Lesnaya prom., 1983.
Hall, T.A., BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids Symp. Ser., 1999, no. 41, pp. 95–98.
Higgins, D.G., Bleasby, A.J., and Fuchs, R., CLUSTAL V: improved software for multiple sequence alignment, Comput. Appl. Biosci., 1992, vol. 8, pp. 189–191.
Hundertmark, K.J., Shields, G.F., Udina, I.G., Bowyer, T.R., Danilkin, A.A., and Schwartz, C.C., Mitochondrial philigeography of moose (Alces alces): Late Pleistocene divergence and population expansion, Mol. Phylogen. Evol., 2002, vol. 22, no. 3, pp. 375–387.
Kholodova, M.V., Rozhkov, Yu.I., Davydov, A.V., Markov, N.I., Sorokin, P.A., Meshcherskii, I.G., Pronyaev, A.V., Sipko, T.P., and Tsarev, S.A., Polymorphism of mtDNA control region and phylogeographic structure of European elk (Alces alces alces) on the territory of Russia, in Los’ v devstvennoi i izmenennoi chelovekom srede: Tr. VI Mezhdunar. simpoz. (Moose in Virgin and Human-Modified Environment: Proc. VI Int. Symp.), Yakutsk: Inst. Biol. Probl. Kriolitozony SORAN, 2008, pp. 45–48.
Kholodova, M.V., Davydov, A.V., Meshcherskii, I.G., Piskunov, O.D., and Rozhkov, Yu.I., Study of molecular genetic diversity of moose (Alces alces L.) in the central and northwestern part of Russia: mtDNA analysis, Vestn. Okhotovedeniya, 2005, vol. 2, no. 3, pp. 26–33.
Kholodova, M.V., Korytin, N.S., and Bol’shakov, V.N., The role of the Urals in the genetic diversity of the European moose subspecies (Alces alces alces), Biol. Bull. (Moscow), 2014, vol. 41, no. 6, pp. 522–528.
Laptev, I.P., Mlekopitayushchie taezhnoi zony Zapadnoi Sibiri (Mammals of the Taiga Zone of Western Siberia), Tomsk: Izd. Tomsk. Univ., 1958.
Mikko, S. and Andersson, L., Low major histocompatibility complex class ii diversity in European and North American moose, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, pp. 42–59.
Moskvitina, N.S., Nemoikina, O.V., Tyuten’kov, O.Yu., and Kholodova, M.V., Retrospective evaluation and the current state of the moose (Alces alces L.) population in Western Siberia: environmental and molecular genetic aspects, Sib. Ekol. Zh., 2011, vol. 18, no. 4, pp. 593–598.
Niedzialkowska, M., Hundertmark, K.J., Jedrzejewska, B., Niedzialkowski, K., Sidorovich, V.E., Gorny, M., Veeroja, R., Solberg, E.J., Laaksonen, S., Sand, H., Solovyev, V.A., Shkvyria, M., Tiainen, J., Okhlopkov, I.M., Juskaitis, R., Donel, G., Borodulin, V.A., Tulandin, E.A., and Jezdrzejewski, W., Spatial structure in European moose (Alces alces): genetic data reveal a complex population history, J. Biogeogr., 2014, vol. 41, pp. 2173–2184.
Polziehn, R.O. and Strobeck, C., Phylogeny of wapiti, red deer, sika deer, and other North American Cervids as determined from mitochondrial DNA, Mol. Phylogenet. Evol., 1998, vol. 10, no. 2, pp. 249–258.
Rogers, A.R. and Harpending, H., Population growth makes waves in the distribution of pairwise genetic differences, Mol. Biol. Evol., 1992, vol. 9, pp. 552–569.
Rozhkov, Yu.I., Pronyaev, A.V., Davydov, A.V., Kholodova, M.V., and Sipko, T.P., Los’: populyatsionnaya biologiya i mikroevolyutsiya (Moose: Population Biology and Microevolution), Moscow: KMK, 2009.
Schmidt, J.I., Hundertmark, K.J., Bowyer, R.T., and Mccracken, K.G., Population structure and genetic diversity of moose in alaska, Heredity, 2009, vol. 100, no. 2, pp. 170–180.
Schneider, S. and Excoffier, L., Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA, Genetics, 1999, vol. 152, pp. 1079–1089.
Shegel’man, I.R., Lesnye transformatsii (XV–XXI vv.) (Forest Transformation (XV–XXI Centuries)), Petrozavodsk: Izd. Petrozavodsk. Univ., 2008.
Shostakovich, V., Lesnye pozhary. Sibirskaya Sovetskaya Entsiklopediya (Forest Fires. Siberian Soviet Encyclopedia), Moscow: Pravda, 1932, vol. 3, pp. 124–127.
Swislocka, M., Ratkiewicz, M., Borowska, A., Komenda, E., and Raczynski, J., Mitochondrial DNA diversity in moose, Alces alces, from Northeastern Poland: evidence for admixture in bottlenecked relic population in the Biebrza valley, Ann. Zool. Fenn., 2008, vol. 45, pp. 360–365.
Swislocka, M., Czajkowska, M., Duda, N., Danylow, J., Owadowska-Cornil, E., and Ratkiewicz, M., Complex patterns of population genetic structure of moose, Alces alces, after recent spatial expansion in Poland revealed by sexlinked markers, Acta Theriol., 2013, vol. 58, pp. 367–378.
Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585–595.
Tamura, K. and Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol., 1993, no. 10, pp. 512–526.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance, and maximum parsimony method, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.
Udina, I.G., Danilkin, A.A., and Boeskorov, G.G., Genetic diversity of moose (Alces alces L.) in Eurasia, Russ. J. Genet., 2002, vol. 38, no. 8, pp. 951–957.
Velichko, A.A., Paleoklimaty i paleolandshafty vnetropicheskogo prostranstva Severnogo polushariya. Pozdnii pleistotsen-golotsen. Atlas-monografiya (Paleoclimates and Paleolandscapes of the Extratropical Space of the Northern Hemisphere. Late Pleistocene–Holocene: An Atlas–Monograph), Moscow: GEOS, 2009.
Volkova, V.S., Stratigraphy and paleogeography of the Pleistocene of Western Siberia: the current state, problems, and ways of their solution, in Byul. Komissii po izucheniyu chetvertichnogo perioda № 69. Spets. vypusk (Bulletin of Commission for Quaternary Research, Special Issue no. 69), Moscow: GEOS, 2009, pp. 25–31.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © O.V. Nemoikina, M.V. Kholodova, O.Yu. Tyutenkov, N.S. Moskvitina, 2016, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2016, No. 4, pp. 396–404.
Rights and permissions
About this article
Cite this article
Nemoikina, O.V., Kholodova, M.V., Tyutenkov, O.Y. et al. Mitotypical peculiarities of the population of moose Alces alces of southeastern West Siberia. Biol Bull Russ Acad Sci 43, 335–343 (2016). https://doi.org/10.1134/S1062359016040117
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1062359016040117


