Skip to main content

Spatial distribution features of the root biomass of some tree species (Picea abies, Pinus sylvestris, Betula sp.)

Abstract

The effect of intra- and interspecific competition on the spatial distribution of the biomass and mortmass of woody plant roots in mixed tree stands has been studied. It has been found that the mass of roots in the samples from tree pairs of different species is higher than in the samples from monospecific pairs. Species-specific differences in the vertical distribution of roots and the effect of intra- and interspecific competition on the spatial structure of biomass have been shown. It has been noted that the proportion of dead roots increases almost linearly with depth.

This is a preview of subscription content, access via your institution.

References

  1. Abrazhko, M.A., Response of fine spruce roots to exclusion of root competition of neighboring trees, Lesovedenie, 1982, no. 6, pp. 41–46.

    Google Scholar 

  2. Bobkova, K.S., The structure of the root systems of trees in different types of pine forests of the Zelenoborsk Station, Tr. Komi Fil. AN SSSR, 1971, no. 24, pp. 52–69.

    Google Scholar 

  3. Bolte, A. and Villanueva, I., Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.), Eur. J. For. Res., 2006, vol. 125, no. 1, pp. 15–26.

    Article  Google Scholar 

  4. Brassard, B.W., The root dynamics of mixed- and single-species stands in the boreal forest of Central and Eastern Canada, Dissertation, Thunder Bay: Lakehead Univ., 2010.

    Google Scholar 

  5. Brassard, B.W., Chen, H.Y.H., Bergeron, Y., and Paré, D., Differences in fine root productivity between mixed- and single-species stands, Funct. Ecol., 2011, vol. 25, pp. 238–246.

    Article  Google Scholar 

  6. Casper, B.B., Schenk, H.J., and Jackson, R.B., Defining a plant’s belowground zone of influence, Ecology, 2003, vol. 84, no. 9, pp. 2313–2321.

    Article  Google Scholar 

  7. Cavard, X., Bergeron, Y., Chen, H.Y.H., et al., Competition and facilitation between tree species change with stand development, Oikos, 2011, vol. 120, pp. 1683–1695.

    Article  Google Scholar 

  8. Chmyr, A.F., Lesnye kul’tury: metodicheskie ukazaniya po issledovaniyu kornevykh sistem drevesnykh porod (Forest Culture: Guidelines for Investigation of Root Systems of Trees), Leningrad: Lesotekhn. Akad., 1984.

    Google Scholar 

  9. Darwin, C. and Wallace, A.R., On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection, J. Proc. Linn. Soc., 1858, vol. 3, pp. 46–50.

    Google Scholar 

  10. Fahey, T.J. and Hughes, J.W., Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH, J. Ecol., 1994, vol. 82, no. 3, pp. 533–548.

    Article  Google Scholar 

  11. Hansson, K., Helmisaari, H.-S., Sah, S.P., and Lange, H., Fine root production and turnover of tree and understorey vegetation in Scots pine, silver birch and Norway spruce stands in SW Sweden, For. Ecol. Manage, 2013, vol. 309, pp. 58–65.

    Article  Google Scholar 

  12. Helmisaari, H.-S., Derome, J., Nöjd, P., and Kukkola, M., Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands, Tree Physiol., 2007, vol. 27, pp. 1493–1504.

    Article  CAS  PubMed  Google Scholar 

  13. Helmisaari, H.-S., Sah, S., and Aro, L., Fine roots on intensive forest ecosystem monitoring plots FIP4, FIP10 and FIP11 on Olkiluoto island in 2008, Working Report 2009-127, Vantaa: Finnish For. Res. Inst., 2009.

    Google Scholar 

  14. Jackson, R.B., Sperry, J.S., and Dawson, T.E., Root water uptake and transport: using physiological processes in global predictions, Trends Plant Sci., 2000, vol. 5, pp. 482–488.

    Article  CAS  PubMed  Google Scholar 

  15. Joslin, J.D., Gaudinski, J.B., Torn, M.S., et al., Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest, New Phytol., 2006, vol. 172, pp. 523–535.

    Article  CAS  PubMed  Google Scholar 

  16. Kalliokoski, T., Root system traits of Norway spruce, Scots pine, and silver birch in mixed boreal forests: an analysis of root architecture, morphology, and anatomy: Diss. Diss. Forestales, vol. 121, Vantaa: Finnish For. Res. Inst., 2011.

    Google Scholar 

  17. Kalliokoski, T., Nygren, P., and Sievänen, R., Coarse root architecture of three boreal tree species growing in mixed stands, Silva Fenn., 2008, vol. 42, no. 2, pp. 189–210.

    Article  Google Scholar 

  18. Kalliokoski, T., Pennanen, T., Nygren, P., et al., Below-ground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients, Plant Soil, 2010, vol. 330, pp. 73–89.

    Article  CAS  Google Scholar 

  19. Laganière, J., Paré, D., and Bradley, R.L., How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing and forest floor conditions, Can. J. For. Res., 2010, vol. 40, pp. 465–475.

    Article  Google Scholar 

  20. Morin, X., Fahse, L., Scherer-Lorenzen, M., and Bugmann, H., Tree species richness promotes productivity in temperate forests through strong complementarity between species, Ecol. Lett., 2011, vol. 14, pp. 1211–1219.

    Article  PubMed  Google Scholar 

  21. Nohrstedt, H.-Ö., Nitrogen fixation (C2H2-reduction) in birch litter, Scan. J. For. Res., 1988, vol. 3, nos. 1–4, pp. 17–23.

    Article  Google Scholar 

  22. Orlov, A.Ya., Method of determining the mass of roots of trees in the forest and the possibility of taking into account the annual growth of organic mass in the forest soil thickness, Lesovedenie, 1967, no. 1, pp. 64–69.

    Google Scholar 

  23. Ostonen, I., Löhmus, K., Helmisaari, H.-S., et al., Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests, Tree Physiol., 2007, vol. 27, pp. 1627–1634.

    Article  PubMed  Google Scholar 

  24. Persson, H., Von Fircks, Y., Majdi, H., and Nilsson, L.O., Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulphate application, Plant Soil, 1995, vol. 168–169, pp. 161–165.

    Article  Google Scholar 

  25. Pretzsch, H., Block, J., Dieler, J., et al., Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient, Ann. For. Sci., 2010, vol. 67, no. 712, pp. 1–12.

    Google Scholar 

  26. Pretzsch, H., Bielak, K., Block, J., et al., Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient, Eur. J. For. Res., 2013, vol. 132, no. 2, pp. 263–280.

    Article  Google Scholar 

  27. Puhe, J., Growth and development of the root system of norway spruce (Picea abies) in forest stands—a review, For. Ecol. Manage, 2003, vol. 175, pp. 253–273.

    Article  Google Scholar 

  28. Rastitel’nost’ Evropeiskoi chasti SSSR (Vegetation of the European part of the USSR), Leningrad: Nauka, 1980.

  29. Rewald, B., Meinen, C., Trockenbrodt, M., et al., Root taxa identification in plant mixtures—current techniques and future challenges, Plant Soil, 2012, vol. 359, pp. 165–182.

    Article  CAS  Google Scholar 

  30. Rothe, A. and Binkley, D., Nutritional interactions in mixed species forests: a synthesis, Can. J. For. Res., 2001, vol. 31, pp. 1855–1870.

    Article  Google Scholar 

  31. Schmid, I. and Kazda, M., Root distribution of Norway spruce in monospecific and mixed stands on different soils, For. Ecol. Manage, 2002, vol. 159, nos. 1–2, pp. 37–47.

    Article  Google Scholar 

  32. Schmid, I., The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech, Basic Appl. Ecol., 2002, vol. 3, pp. 339–346.

    Article  Google Scholar 

  33. Sperry, J.S., Adler, E.R., Campbell, G.S., and Comstock, J.P., Limitation of plant water use by rhizosphere and xylem conductance: results from a model, Plant Cell Environ., 1998, vol. 21, pp. 347–359.

    Article  Google Scholar 

  34. Sterba, H., Blab, A., and Katzensteiner, K., Adapting as individual tree growth model for Norway spruce (Picea abies L. Karst.) in pure and mixed species stands, For. Ecol. Manage, 2002, vol. 159, pp. 101–110.

    Article  Google Scholar 

  35. Strong, W.L. and La Roi, G.H., Root density—soil relationships in selected boreal forests of central Alberta, Canada, For. Ecol. Manage, 1985, vol. 12, pp. 233–251.

    Article  Google Scholar 

  36. Vesterdal, L., Elberling, B., Christiansen, J.R., et al., Soil respiration and rates of soil carbon turnover differ among six common European tree species, For. Ecol. Manage, 2012, vol. 264, pp. 185–196.

    Article  Google Scholar 

  37. Vogt, K.A. and Persson, H., in Techniques and Approaches in Forest Tree Ecophysiology, Lassole, J.P. and Hinckley, T.M, Eds., Boca Raton,: FL: CRC Press, 1991, pp. 477–501.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. N. Shanin.

Additional information

Original Russian Text © V.N. Shanin, L.K. Rocheva, M.P. Shashkov, N.V. Ivanova, S.V. Moskalenko, E.R. Burnasheva, 2015, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2015, No. 3, pp. 316–325.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shanin, V.N., Rocheva, L.K., Shashkov, M.P. et al. Spatial distribution features of the root biomass of some tree species (Picea abies, Pinus sylvestris, Betula sp.). Biol Bull Russ Acad Sci 42, 260–268 (2015). https://doi.org/10.1134/S1062359015030115

Download citation

Keywords

  • Fine Root
  • Root Biomass
  • Biology Bulletin
  • Mixed Stand
  • Fine Root Biomass