Advertisement

Biology Bulletin

, Volume 39, Issue 7, pp 601–617 | Cite as

New data on the brain and cognitive abilities of birds

  • Z. A. ZorinaEmail author
  • T. A. Obozova
Article

Abstract

New evidence of functional analogies and homologies of avian and mammalian brains is presented, as is a revised nomenclature of the most important brain structures. Comparative characteristics of the avian brain and criteria for its progressive development in the phylogeny have been considered. We studied the possibility to use Portmann’s index as one of the indicators of brain development in different avian species. We substantiated the necessity to chose for investigation new sets of avian species with medium (Parus caeruleus and Loxia curvirostra) and low (Larus glaucescens) levels of brain complexity to maintain fully valuable grounds for comparing the cognitive abilities in birds. The main experimentally supported proofs of the existence of elementary thinking and some other cognitive functions in the higher birds have been reviewed. The high levels of cognitive processes that underlie the tool using ability in birds, as well as the similarity to those processes in apes, have been demonstrated from the results obtained in the first decade of the 21st century. Comparative studies on proto-instrumental activity confirmed the ability of hooded crows and ravens to find urgent solution of tool-using tasks. Although birds with a medium level of brain complexity display seemingly rational behavior, it is plausible that they use simpler rules being unable to understand the task logic. It was shown that birds of different orders with a high level of brain complexity demonstrate similar dynamics in the development of abstract concepts. Crossbills, which have a medium level of brain complexity, were able to develop the same concepts at a lower level than the corvids; whereas the seagulls and pigeons, which possess a low level of cognitive abilities, were not able to operate any abstractions and were incapable of solving other cognitive tests. The fact that corvids, parrots, and apes have similar abilities to solve some cognitive tasks supports the hypothesis of the convergent evolution of the brain and cognition in birds and primates.

Keywords

birds cognitive abilities levels of avian brain complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreeva, N.G. and Obukhov, D.K., Evolyutsionnaya morfologiya nervnoi sistemy pozvonochnykh (Evolutionary Morphology of the Vertebrate Nervous System), St. Petersburg: Lan’, 1999.Google Scholar
  2. Auersperg, A.M., Gajdon, G.K., and Huber, L., Kea (Nestor notabilis) Consider Spatial Relationships between Objects in the Support Problem, Biol. Lett., 2009, vol. 5, no. 4, pp. 455–458.PubMedCrossRefGoogle Scholar
  3. Bugnyar, T. and Heinrich, B., The Wise Raven, V Mire Nauki, 2007, no. 7, pp. 59–65.Google Scholar
  4. Bagotskaya, M.S., Smirnova, A.A., and Zorina, Z.A., Comparative Analysis of the Ability of Corvid Birds to Solve Baited String-Pulling Tasks, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2010a, vol. 60, no. 3, pp. 321–329.Google Scholar
  5. Bagotskaya, M.S., Smirnova, A.A., and Zorina, Z.A., Corvid Birds Can Understand Logical Structure in Baited Struing-Pulling Tasks, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2010b, vol. 60, no. 5, pp. 543–551.Google Scholar
  6. Bird, Ch.D. and Emery, N.J., Rooks Use Stones to Raise the Water Level to Reach a Floating Worm, Curr. Biol., 2009, vol. 19, no. 16, pp. 1410–1414.PubMedCrossRefGoogle Scholar
  7. Bluff, L.A., Weir, A.A.S., Rutz, C., Wimpenny, J.H., and Kacelnik, A., Tool-Related Cognition in New Caledonian Crows, Comp. Cognit. Behav. Rev., 2007, vol. 2, pp. 1–25.Google Scholar
  8. Bogoslovskaya, L.S. and Polyakov, G.I., Puti morfologicheskogo progressa nervnykh tsentrov u vysshikh pozvonochnykh (Pathways of the Morphological Progress of Neural Centers in Higher Vertebrates), Moscow: Nauka, 1981.Google Scholar
  9. Boire D., Comparison quantitative de l’encephale de ces grandes subdivisions et de relais visuels, trijumeaux et acoustiques chez 28 especes d’oiseaux, Ph.D. Dissertation, Universite de Montreal, Canada, 1989.Google Scholar
  10. Bond, A.B., Kamil, A.C., and Balda, R.P., Serial Reversal Learning and the Evolution of Behavioral Flexibility in Three Species of North American Corvids (Gymnorhinus cyanocephalus, Nucifraga columbiana, Aphelocoma californica), J. Comp. Psychol., 2007, vol. 121, pp. 372–379.PubMedCrossRefGoogle Scholar
  11. Burish, M.J., Kueh, H.Y., and Wang, S.S., H., Brain Architecture and Social Complexity in Modern and Ancient Birds, Brain Behav. Evol., 2004, vol. 63, pp. 107–124.PubMedCrossRefGoogle Scholar
  12. Chappell, J. and Kacelnik, A., 2004. Selection of Tool Diameter by New Caledonian Crows Corvus moneduloides, Anim. Cognit., 2004, vol. 7, pp. 121–127.CrossRefGoogle Scholar
  13. Clayton, N.S. and Emery, N.J., Do Jays Know about Other Minds and Other Times?, in Neurobiology of “Umwelt”, Berlin: Springer, 2009, pp. 109–123.CrossRefGoogle Scholar
  14. Clayton, N.S. and Krebs, J.R., Memory for Spatial and Object-Specific Cues in Food-Storing and Non-Storing Birds, J. Comp. Physiol. A, 1994, vol. 174, pp. 371–379.Google Scholar
  15. Comparative Cognition: Experimental Exploration of Animal Intelligence, Oxford: Oxford University Press, 2006.Google Scholar
  16. Dally, J.M., Emery, N.J., and Clayton, N.S., Cache Protection Strategies by Western Scrub-Jays, Aphelocoma valifornica: Implications for Social Cognition, Anim. Behav., 2005, vol. 70, pp. 1251–1263.CrossRefGoogle Scholar
  17. Dally, J.M., Emery, N.J., and Clayton, N.S., Food-Caching Western Scrub-Jays Keep Track of Who Was Watching When, Science, 2006, vol. 312, pp. 1662–1665.PubMedCrossRefGoogle Scholar
  18. Elliot-Smith, G., Notes upon the Natural Subdivisions of the Cerebral Hemisphere, J. Anat. Physiol., 2001, vol. 35, pp. 431–454.Google Scholar
  19. Emery, N.J., Cognitive Ornithology: The Evolution of Avian Intelligence, Phil. Trans. R. Soc. London, Biol. Sci., 2006, vol. 361, no. 1465, pp. 23–43.CrossRefGoogle Scholar
  20. Emery, N.J. and Clayton, N.S., Evolution of the Avian Brain and Intelligence, Curr. Biol., 2005, vol. 15, no. 23, pp. 946–950.CrossRefGoogle Scholar
  21. Emery, N.J., Dally, J.M., and Clayton, N.S., Western Scrub-Jays (Aphelocoma californica) Use Cognitive Strategies to Protect Their Caches from Thieving Conspecifics, Anim. Cognit., 2004, vol. 7, no. 1, pp. 37–43.CrossRefGoogle Scholar
  22. Fabri, K.E., Orudiinye deistviya zhivotnykh (Tool-Using Activities of Animals), Moscow: Znanie, 1980.Google Scholar
  23. Firsov, L.A. and Chizhenkov, A.M., Evolyutsiya intellekta (prisushch li razum zhivotnym?) (Evolution of Intellect: Is Intelligence Essential to Animals?), St. Petersburg: Aster-X, 2004.Google Scholar
  24. Firsov, L.A., Pamyat’ u antropoidov. Fiziologicheskii analiz (Memory in Anthropoids: Physiological Analysis), Leningrad: Nauka, 1972.Google Scholar
  25. Firsov, L.A., Higher Nervous Activity of Anthropoid Apes and the Problem of Anthropogenesis, in Rukovodstvo po fiziologii. Fiziologiya povedeniya: neirobiologicheskie zakonomernosti (Physiology of Behavior: Neurobiological Patterns. A Hendbook), Leningrad: Nauka, 1987, pp. 639–711.Google Scholar
  26. Gusel’nikov, V.I., Elektrofiziologicheskoe issledovanie analizatornykh sistem v filogeneze pozvonochnykh (Electrophysiological Investigation of Analyzer Systems in the Phylogeny of Vertebrates), Moscow: Mosk. Gos. Univ., 1965.Google Scholar
  27. Heinrich, B., The Mind of the Raven: Investigations and Adventures with Wolf-Birds, New York: HarperCollins, 1999.Google Scholar
  28. Heinrich, B., Testing Insight in Ravens, in The Evolution of Cognition, Cambridge: MIT Press, 2000, pp. 289–307.Google Scholar
  29. Heinrich, B. and Bugnyar, T., Just How Smart Are Ravens?, Sci. Am., April 2007, pp. 64–71.Google Scholar
  30. Huber, L. and Gyula, K.G., Technical Intelligence in Animals: the Kea Model, Anim. Cognit., 2006, vol. 9, pp. 295–305.CrossRefGoogle Scholar
  31. Hunt, G.R., Manufacture and Use of Hook-Tools by New Caledonian Crows, Nature, 1996, vol. 379, pp. 249–251.CrossRefGoogle Scholar
  32. Hunt, G.R., Rutledge, R.B., and Gray, R.D., The Right Tool for the Job: What Strategy Do Wild New Caledonian Crows Use?, Anim. Cognit., 2006, vol. 9, pp. 307–316.CrossRefGoogle Scholar
  33. Isler, K. and van Schaik, C.P., Why Are There So Few Smart Mammals (But So Many Smart Birds)?, Biol. Lett., 2009, vol. 5, pp. 125–129.PubMedCrossRefGoogle Scholar
  34. Jarvis, E.D., Gntrkn, O., Bruce, L., et al., The Avian Brain Nomenclature Consortium, Nature Rev. Neurosci., 2005, vol. 6, pp. 151–159.CrossRefGoogle Scholar
  35. Jones, T. and Kamil, A.C., Tool-Making and Tool-Using in the Nothern Blue Jay, Science, 1973, vol. 180, pp. 1076–1078.PubMedCrossRefGoogle Scholar
  36. Kamil, A.C., The Evolution of Higher Learning Abilities in Birds, Acta XVIII Congr. Int. Ornithol., Moscow, 1982, Moscow: Nauka, 1985, pp. 811–818.Google Scholar
  37. Kamil, A.C., Balda, R.P., and Olson, D.J., Performance of Four Seed-Caching Corvid Species in the Radial-Arm Maze Analog, J. Comp. Psychol., 1994, vol. 108, no. 4, pp. 385–393.PubMedCrossRefGoogle Scholar
  38. Kamil, A.C., Longee, M., and Shulman, R.L., Learning-Set Behavior in the Learning-Set Experienced Blue Jay (Cyanocitta cristata), J. Comp. Physiol. Psychol., 1973, vol. 82, no. 3, pp. 394–406.CrossRefGoogle Scholar
  39. Karten, H.J., The Organization of the Avian Telencephalon and Some Speculations on the Phylogeny of the Amniote Telencephalon, Ann. N.Y. Acad. Sci., 1969, vol. 167, no. 1, pp. 164–179.CrossRefGoogle Scholar
  40. Karten, H.J., Homology and Evolutionary Origins of the Neocortex, Brain Behav. Evol., 1991, vol. 8, pp. 264–272.CrossRefGoogle Scholar
  41. Kohler, W., The Mentality of Apes, London: Routledge, 1925.Google Scholar
  42. Kenward, B., Rutz, C., Weir, A.A.S., and Kacelnik, A., Development of Tool Use in New Caledonian Crows: Inherited Action Patterns and Social Influence, Anim. Behav., 2006, vol. 72, pp. 1329–1343.CrossRefGoogle Scholar
  43. Heinrich, B., Ravens in Winter, New York: Summit Books, 1989. Translated under the title Voron zimoi, Moscow: Mir, 1994.Google Scholar
  44. Koehler, O., Thinking Without Words, Proc. 14th Int. Congr. Zool., 1953, Copengagen, 1956, pp. 75–88.Google Scholar
  45. Krushinsky, L.V., Experimental Studies of Elementary Reasoning: Evolutionary, Physiological, and Genetic Aspects of Behavior, New Delhi: Oxonian Press, 1990.Google Scholar
  46. Krushinsky, L.V., Dobrokhotova, L.P., and Shkol’nik-Yarros, E.G., Elementary Rational Activity and Morphophysiological Parallels in the Forebrain of Birds and Mammals, Zh. Obshch. Biol., 1985, vol. 46, no. 5, pp. 633–644.Google Scholar
  47. Ladygina-Kots, N.N., Konstruktivnaya i orudiinaya deyatel’nost’ vysshikh obez’yan (Constructive and Tool-Using Activities of Higher Apes), Moscow: Nauka, 1959.Google Scholar
  48. Lazareva, O.F. and Wasserman, E.A., Effect of Stimulus Orderability and Reinforcement History on Transitive Responding in Pigeons, Behav. Proc., 2006, vol. 72, pp. 161–172.CrossRefGoogle Scholar
  49. Lazareva, O.F., Smirnova, A.A., Rayevsky, V.V., and Zorina, Z.A., 2000. Transitive Inference in Hooded Crows: Preliminary Data, Doklady Biol. Sci., 2000, vol. 370, pp. 30–32.Google Scholar
  50. Lazareva, O.F., Smirnova, A.A., Bagozkaja, M.S., Rayevsky, V.V., Zorina, Z.A., and Wasserman, E.A., Transitive Responding in Hooded Crows Requires Linearly Ordered Stimuli, J. Exp. Anal. Behav., 2004, vol. 82, no. 1, pp. 1–19.PubMedCrossRefGoogle Scholar
  51. Leont’ev, A.N., Problemy razvitiya psikhiki (Problems of Psyche Development), Moscow: APN RSFSR, 1959.Google Scholar
  52. Luriya, A.R., Osnovy neiropsikhologii (Fundamentals of Neurophsychology), Moscow: Mosk. Gos. Univ., 1973.Google Scholar
  53. Mackintosh, N.J., Abstraction and Discrimination, in The Evolution of Cognition, Cambridge: MIT Press, 2000, pp. 123–143.Google Scholar
  54. Mal’chevskii, A.S. and Pukinskii, Yu.B., Ptitsy Leningradskoi oblasti i sopredel’nykh territorii (Birds of Leningrad Oblast and Neighboring Regions), Leningrad: Leningr. Gos. Univ., 1983.Google Scholar
  55. McGrew, W.C., Tools to Get Food: the Subsistence of the Tasmanian Aborigines and Tanzanian Chimpanzees Compared, J. Anthropol. Res., 1987, vol. 43, pp. 247–258.Google Scholar
  56. Nealen, P.M. and Ricklefs, R.E., Early Diversification of the Avian Brain: Body Relationship, J. Zool., 2001, vol. 253, pp. 391–404.CrossRefGoogle Scholar
  57. Obozova, T.A. and Smirnova, A.A., Comparison of Concept-Forming Abilities of Hooded Crows and Crossbills, Ekologiya vranovykh v estestvennykh i antropogennykh landshaftakh. Materialy VIII Mezhdunar. konf. po vranovym ptitsam (Ecology of Corvids in Natural and Anthropogenic Landscapes: Proc. VIII Int. Conf. on Corvid Birds, Yakornaya Shchel’, 2007, pp. 192–194.Google Scholar
  58. Obozova, T., Smirnova, A., and Zorina, Z., Crossbills (Loxia curvirostra) Are Able to Form the “Larger Than” Concept, Zh. Vyssh. Nervn. Deyat., 2009, vol. 59, no. 3, pp. 318–325.Google Scholar
  59. Obozova, T.A., Bagotskaya, M.S., Smirnova, A.A., and Zorina, Z.A., Comparative Evaluation of the Ability to Solve a Complex of Baited String-Pulling Tests in Hooded Crows, Blue Tits, and Common Crossbills, Vranovye ptitsy Severnoi Evrazii. Materialy IX Mezhdunar. konf. po izucheniyu vranovykh ptits Severnoi Evrazii (Corvid Birds of Northern Eurasia: Proc. IX Int. Conf. on Studies of Corvids in Northern Eurasia), Omsk, 2010, pp. 99–100.Google Scholar
  60. Obukhov, D.K., Evolyutsionnaya morfologiya konechnogo mozga pozvonochnykh (Evolutionary Morphology of the Telencephalon in Vertebrates), St. Petersburg: Znak.Google Scholar
  61. Orenstein, R.I., Tool-Use by the New Caledonian Crow (Corvus moneduloides), Auk, 1972, vol. 9, no. 3, pp. 674–676.Google Scholar
  62. Parker, S.T. and Gibson, K.R., Object Manipulation, Tool-Use, and Sensory Motor Intelligence As Feeding Adaptations in Cebus Monkeys and Great Apes, J. Hum. Evol., 1977, vol. 6, pp. 623–641.CrossRefGoogle Scholar
  63. Pepperberg, I.M., Functional Vocalizations by an African Grey Parrot (Psittacus erithacus), Z. Tierpsychol., 1981, vol. 55, pp. 139–160.CrossRefGoogle Scholar
  64. Pleskacheva, M.G., Birds in a Radial Maze, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2008, vol. 58, no. 3, pp. 389–407.Google Scholar
  65. Pleskacheva, M.G., Behavior and Spatial Learning in Radial Mazes in Birds, Neurosci. Behav. Physiol., 2009, vol. 39, pp. 725–739.PubMedCrossRefGoogle Scholar
  66. Portmann, A., Etudes sur la cerebralisation chez les oiseaux: I, Alauda, 1946, no. 14, pp. 2–20.Google Scholar
  67. Portmann, A., Etudes sur la cerebralisation chez les oiseaux: II, III, Alauda, 1947, no. 15, pp. 1–15, 161–171.Google Scholar
  68. Powell, R.W. and Kelly, W., A Method for the Objective Study of Tool-Using Behavior, J. Exptl. Anal. Behav., 1975, vol. 24, pp. 249–253.CrossRefGoogle Scholar
  69. Premack, D. and Woodruff, G., Does the Chimpanzee Have a Theory of Mind?, Behav. Brain Sci., 1978, vol. 1, pp. 515–526.CrossRefGoogle Scholar
  70. Prior, H., Schwarz, A., and Gunturkun, O., Mirror-Induced Behavior in the Magpie (Pica pica): Evidence of Self-Recognition. PLoS Biol., 2008, vol. 6, no. 8, pp. 1642–1650.CrossRefGoogle Scholar
  71. Rehkamper, G., Frahm, H., and Mann, M.D., Evolutionary Constraints of Large Telencephala, in Brain Evolution and Cognition, New York: Willey, 2001, pp. 49–77.Google Scholar
  72. Rehkamper, G., Frahm, H.D., and Zilles, K., Quantitative Development of Brain and Brain Structures in Birds (Galliformes and Passeriformes) Compared to That in Mammals (Insectivores and Primates), Brain Behav. Evol., 1991, vol. 37, pp. 125–143.PubMedCrossRefGoogle Scholar
  73. Reid, J., Tool-Use by Rook (Corvus frugilegus) and Its Causation, Anim. Behav., 1982. vol. 30, pp. 1212–1216.CrossRefGoogle Scholar
  74. Reiner, A., Avian Evolution: from Darwin’s Finches To a New Way of Thinking About Avian Forebrain Organization and Behavioural Capabilities, Biol. Lett., 2009, vol. 5, pp. 122–124.PubMedCrossRefGoogle Scholar
  75. Reiner, A., Yamamoto, K., and Karten, H.J., Organization and Evolution of the Avian Forebrain, Anat. Rec. A, 2005, vol. 287, no. 1, pp. 1080–1102.Google Scholar
  76. Reiner, A., Perkel, D.J., Bruce, L.L., Butler, A.B., et al., Revised Nomenclature for Avian Telencephalon and Some Related Brainstem Nuclei, J. Comp. Neurol., 2004, vol. 473, pp. 377–414.PubMedCrossRefGoogle Scholar
  77. Repina, N.A.,. Specific Features of Interhemispheric Asymmetry in the Cytoarchitecture of Higher Information Processing Centers in Birds, Ornitologiya v Severnoi Evrazii. Materialy XIII Mezhdunar. ornitol. konf. Severnoi Evrazii (Ornithology in Northern Eurasia: Proc. XIII Northern Eurasian Ornithol. Conf., Orenburg, 2010, pp. 265–266.Google Scholar
  78. Rezanov, A.G., Kormovoe povedenie ptits: metod tsifrovogo kodirovaniya i analiz bazy dannykh (Foraging Behavior of Birds: Method of Digital Coding and Analysis of Database), Moscow: Shkola, 2000.Google Scholar
  79. Reznikova, Zh.I., Animal intelligence: From Individual to Social Cognition, Cambridge: Cambridge Univ. Press, 2007.Google Scholar
  80. Reznikova, Zh.I., Intellekt i yazyk zhivotnykh i cheloveka: Osnovy kognitivnoi etologii (Intellect and Language of Animals and Humans: Foundations of Cognitive Ethology), Moscow: Akademkniga, 2005.Google Scholar
  81. Ricklefs, R.E., The Cognitive Face of Avian Life Histories. The 2003 Margaret Morse Nice Lecture, Wilson Bull. Quart. J. Ornithol., 2004, vol. 116, no. 2, pp. 119–196.CrossRefGoogle Scholar
  82. Schuck-Paim, C., Borsari, A., and Ottoni, E.B., Means to an End: Neotropical Parrots Manage to Pull Strings to Meet Their Goals, Anim. Cognit., 2009, vol. 12, pp. 287–301.CrossRefGoogle Scholar
  83. Seed, A.M., Emery, N.J., and Clayton, N.S., Intelligence in Corvids and Apes: A Case of Convergent Evolution?, Ethology, 2009, vol. 115, pp. 401–420.CrossRefGoogle Scholar
  84. Sergienko, E.A., Lebedeva, E.I., and Prusakova, O.A, 2009. Model’ psikhicheskogo v ontogeneze cheloveka (TRANSLA-TION), Moscow: Institut psikhologii RAN.Google Scholar
  85. Smirnova, A.A., On the Ability for Symbolization in Birds, Zool. Zh., 2011, vol. 90, no. 7.Google Scholar
  86. Smirnova, A.A., Lazareva, O.F., and Zorina, Z.A., 1998. Teaching Hooded Crows (Corvus cornix L.) the Abstract Rule of Choice by the Matching/Oddity of the Sample, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1998, vol. 48, no. 5, pp. 855–867.Google Scholar
  87. Smirnova, A.A., Lazareva, O.F., and Zorina, Z.A., Analysis of the Ability of Hooded Crows to Perform Elements of Symbolization, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2002, vol. 52, no. 2, pp. 241–254.Google Scholar
  88. Smirnova, A.A., Lazareva, O.F. and Zorina, Z.A., Use of Number by Crows: Investigation by Matching and Oddity Learning, J. Exp. Anal. Behav., 2000, vol. 73, pp. 163–176.PubMedCrossRefGoogle Scholar
  89. Stingelin, W., Vergleichende morphologische Untersuchungen am Vorderhirn der Vogel auf cytoarchitektonischer Grundlage, Basel: Lichtenhahn, 1958.Google Scholar
  90. Taylor, A.H., Hunt, G.R., Medina, F.S., and Gray, R.D., Do New Caledonian Crows Solve Physical Problems through Causal Reasoning?, Proc. R. Soc. London, 2009, vol. 276, pp. 247–254.CrossRefGoogle Scholar
  91. Timmermans, S., Lefebvre, L., Boire, D., and Basu, P., Relative Size of the Hyperstriatum Ventrale Is the Best Predictor of Feeding Innovation Rate in Birds, Brain Behav Evol., 2000, vol. 56, no. 4, pp. 196–203.PubMedCrossRefGoogle Scholar
  92. Vancatova, M., The Influence of Imitation on Tool Using in Capouchine Monkeys (Cebus apella), Anthropologie, 1984, vol. 22, no. 1, pp. 1–2.Google Scholar
  93. Voronov, L.N., Morfofiziologicheskie zakonomernosti sovershenstvovaniya golovnogo mozga i drugikh organov ptits (Morphological Patterns of the Perfection of Brain and Other Organs in Birds), Moscow: Mosk. Gos. Univ., 2003.Google Scholar
  94. Voronov, L.N., Samsonova, M.L., Romanova, N.M., et al., Sravnitel’nyi analiz osobennostei morfotipov konechnogo mozga vranovykh i drugikh ptits, Ekologiya vranovykh v estestvennykh i antropogennykh landshaftakh. Materialy VIII Mezhdunar. konf. po vranovym ptitsam (Ecology of Corvids in Natural and Anthropogenic Landscapes: Proc. VIII Int. Conf. on Corvids Birds, Yakornaya Shchel’, 2007, pp. 176–178.Google Scholar
  95. Weir, A.A.S. and Kacelnik, A., New Caledonian Crow (Corvus moneduloides) Creatively Re-Designs Tools by Bending or Unbending Aluminium Strips, Anim. Cognit., 2006, vol. 9, pp. 317–334.CrossRefGoogle Scholar
  96. Weir, A.A.S., Chappell, J., and Kacelnik, A., Shaping of Hooks in New Caledonian Crows, Science, 2002, vol. 297, no. 5583, pp. 981–983.PubMedCrossRefGoogle Scholar
  97. Weir, A.A.S., Kenward, B., Chappel, J., and Kacelnik, A., Lateralization of Tool Use in New Caledonian Crows (Corvus moneduloides), Proc. Roy. Soc. London B (Suppl.), 2004, vol. 271, pp. 344–S346.CrossRefGoogle Scholar
  98. Wilson, B.J., Mackintosh, N.J., and Boakes, R.A., Matching and Oddity Learning in the Pigeon: Transfer Effects and the Absence of Relational Learning, Quart. J. Exp. Psychol., 1985a, vol. 37B, pp. 295–311.Google Scholar
  99. Wilson, B.J., Mackintosh, N.J., and Boakes, R.A., Transfer of Relational Rules in Matching and Oddity Learning by Pigeons and Corvids, Quart. J. Exp. Psychol., 1985b, vol. 37B, pp. 313–332.Google Scholar
  100. Wimpenny, J.H., Weir, A.A., Clayton, L., Rutz, Ch., and Kacelnic, A., Cognitive Processes Associated with Sequential Tool Use in New Caledonian Crows, PLoS ONE, 2009, vol. 4, no. 8, e6471. http://www.plosone.org. Accessed August 1, 2009.PubMedCrossRefGoogle Scholar
  101. Yoerg, S.I. and Kamil, A.C., Integrating Cognitive Ethology with Cognitive Psychology, in Cognitive Ethology: The Mind of Other Animals, Hillsdale: Lawrence Erlbaum Assoc., 1991, pp. 271–290.Google Scholar
  102. Zelenskaya, L.A., Foraging Strategies of the Commander Island Population of Glaucous-Winged Gulls (Larus glaucescens Naumann), Zool. Zh., 2003, vol. 82, no. 6, pp. 694–707.Google Scholar
  103. Zorina, Z.A., Comparative Studies on Some Complex Forms of Learning in Birds, in Sravnitel’naya fiziologiya VND cheloveka i zhivotnykh (Comparative Physiology of Human and Animal Higher Nervous Activity), Leningrad: Nauka, 1990, pp. 21–36.Google Scholar
  104. Zorina, Z.A., Animal intelligence: Laboratory Experiments and Observations in Nature. Entomological Review, Vol. 85,Suppl. 1, 2005, pp. S42–S54. Translated from Zoologicheskii Zhurnal, Vol. 85, no. 6, 2005.Google Scholar
  105. Zorina, Z.A. and Smirnova, A.A., Quantitative Evaluations in Gray Crows: Generalization of the Relative Attribute “Larger Set,” Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1995, vol. 45, no. 3, pp. 490–499.Google Scholar
  106. Zorina, Z.A. and Smirnova, A.A., Concept Formation in Crows, 9-th European Congress of Psychology, Granada, 2005, p. 155.Google Scholar
  107. Zorina, Z.A., Kalinina, T.S., and Markina, N.V., Capacity of Birds for Transitive Inference: The Solution of the Gillan Test by Corvids and Pigeons, Zn. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1995, vol. 45, no. 4, pp. 716–722.Google Scholar
  108. Zorina, Z.A., Smirnova, A.A., and Lazareva, O.F., Can Crows count?, Priroda (Moscow), 2001, no. 2, pp. 72–79.Google Scholar
  109. Zorina, Z.A., Smirnova, A.A., and Pleskacheva, M.G., Higher Nervous Activity of the Hooded Crow, in Seraya vorona (Corvus cornix) v antropogennykh landshaftakh Palearktiki (Problemy sinantropizatsii i urbanizatsii) (The Hooded Crow, Corvus cornix, in Anthropogenic Landscapes of the Palearctic:Problems of Synanthropization and Urbanization), Ivanovo: X-Press, 2007, pp. 205–265.Google Scholar
  110. Zorina, Z.A., Smirnova, A.A., Pleskacheva, M.G., and Dubynina, E.V., News in Studies on the Brain and Higher Nervous Activity of Corvid Birds (2002–2005), in Ekologiya vranovykh ptits v usloviyakh estestvennykh i antropogennykh landshaftov Rossii. Trudy Vseros. nauch. konfer. po izucheniyu vranovykh ptits (Ecology of Corvids in Natural and Anthropogenic Landscapes of Russia: Proc. All-Russia Sci. Conf. on Studies of Corvid Birds), Kazan: Novoe Znanie, 2006, pp. 16–43.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations