Advertisement

Biology Bulletin

, Volume 39, Issue 3, pp 229–236 | Cite as

Effect of gold nanoparticles on mouse spermatogenesis

  • S. T. ZakhidovEmail author
  • S. M. Pavlyuchenkova
  • T. L. Marshak
  • V. M. Rudoy
  • O. V. Dement’eva
  • I. A. Zelenina
  • S. G. Skuridin
  • A. A. Makarov
  • A. N. Khokhlov
  • Yu. M. Evdokimov
Developmental Biology

Abstract

The response of the mouse male germ cells exposed to gold nanoparticles (∼2.5 nm) was studied. Our investigation demonstrates that treatment with Au nanoparticles for four days does not impair the architecture of the spermatogenic epithelium. Cytogenetic evaluation using micronucleus assay showed that gold nanoparticles can affect the chromosomes of early primary spermatocytes. However, gold nanoparticles did not induce chromosome abnormalities in spermatogonial stem cells. Further, the cauda epididymal sperm was isolated on the 14th day after treatment and was incubated in SDS solution (Na dodecyl sulphate) and then in a solution containing DTT (dithiothreitol) to induce nuclear chromatin decondensation. Observations showed that after four days of treatment of spermiogenic (postmeiotic) cells with gold nanoparticles the decondensation process had no differences from the control. On the contrary, in the experiment with the same cells and period of fixation but with a single exposure to gold nanoparticles, the number of mature gametes with totally decondensed nuclei reached 100% as opposed to 44% in the controls.

Keywords

Gold Nanoparticles Biology Bulletin Sperm Cell Round Spermatid Epididymal Sperm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björndahl, L. and Kvist, U., Human Sperm Chromatin Stabilization: A Proposed Model Including Zinc Bridges, Mol. Num. Reprod., 2010, vol. 16, pp. 23–29.CrossRefGoogle Scholar
  2. Boisvert, F.M., van Koningsbruggen, S., Navascués, J., and Lamond, A.I., The Multifunctional Nucleolus, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, no. 7, pp. 574–585.PubMedCrossRefGoogle Scholar
  3. Braydich-Stolle, L., Hussain, S., Schlager, J.J., and Hofmann, M-C., In vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells, Toxicol. Sci., 2005, vol. 88, pp. 412–419.PubMedCrossRefGoogle Scholar
  4. Braydich-Stolle, L.K., Lucas, B., Schrand, A., et al., Silver Nanoparticles Disrupt GDNF/Fyn Kinase Signaling in Spermatogonial Stem Cells, Toxicol. Sci., 2010, vol. 116, pp. 577–589.PubMedCrossRefGoogle Scholar
  5. Carrell, D.T., Emery, B.R., and Hammoud, S., Altered Protamine Expression and Diminished Spermatogenesis: What Is the Link?, Hum. Reprod. Update, 2007, vol. 13, no. 3, pp. 313–327.PubMedCrossRefGoogle Scholar
  6. Cho, C., Jung-Ha, H., Willis, W.D., et al., Protamine 2 Deficiency Leads to Sperm DNA Damage and Embryo Death in Mice, Biol. Reprod., 2003, vol. 69, pp. 211–217.PubMedCrossRefGoogle Scholar
  7. Doak, S.H., Grifths, S.M., Manshian, B., et al., Confounding Experimental Considerations in Nanogenotoxicology, Mutagenesis, 2009, vol. 24, pp. 285–293.PubMedCrossRefGoogle Scholar
  8. Duff, D.G., Baiker, A., and Edwards, P.P., A New Hydrosol of Gold Clusters. 1. Formation and Particle Size Variation, Langmuir, 1993, vol. 9, pp. 2301–2309.CrossRefGoogle Scholar
  9. Fan, Y.O., Zhang, Y.H., Zhang, X.P., et al., Comparative Study of Nanosized and Microsized Silicon Dioxide on Spermatogenesis Function of Male Rats, Wei Sheng Yan Jiu, 2006, vol. 35, pp. 549–553.PubMedGoogle Scholar
  10. Grenier, L., Robaire, B., and Hales, B.F., Paternal Exposure to Cyclophosphamide Affects the Progression of Sperm Chromatin Decondensation and Activates a DNA Damage Response in the Prepronuclear Rat Zygote, Biol. Reprod., 2010, vol. 83, pp. 195–204.PubMedCrossRefGoogle Scholar
  11. Landsiedel, R., Kapp, M.D., Schulz, M., et al., Genotoxicity Investigations on Nanomaterials: Methods, Preparation and Characterization of Test Material, Potential Artifacts and Limitations-Many Questions, Some Answers, Mutat. Res., 2009, vol. 681, pp. 241–258.PubMedCrossRefGoogle Scholar
  12. Ng, C.-T., Li, J.J., Bay, B.-H., and Yung, L.-Y.L., Current Studies into Genotoxic Effects of Nanomaterials, J. Nucleic. Acids, 2010, p. 947859.Google Scholar
  13. Noori, A., Parivar, K., Modaresi, M., et al., Effect of Magnetic Iron Oxide Nanoparticles on Pregnancy and Testicular Development of Mice, African J. Biotechnol., 2011, vol. 10, pp. 1221–1227.Google Scholar
  14. D’Occhio, M.J., Hengstberger, K.J., and Johnston, S.D., Biology of Sperm Chromatin Structure and Relationship to Male Fertility and Embryonic Survival, Anim. Reprod. Sci., 2007, vol. 101, pp. 1–17.PubMedCrossRefGoogle Scholar
  15. Oliva, R., Protamines and Male Infertility, Hum. Reprod. Update, 2006, vol. 12, pp. 417–435.PubMedCrossRefGoogle Scholar
  16. Rapoport, I.A. and Parnes, V.A., Mutation Mechanism and Its Possible Role in Oncogenesis, in Teoriya khimicheskogo mutageneza (The Theory of Chemical Mutagenesis), Moscow: Nauka, 1991, pp. 16–29.Google Scholar
  17. Scott, M.S., Boisvert, F.M., Lamond, A.I., and Barton, G.J., PNAC: A Protein Nucleolar Association Classifier, BMC Genomics, 2011, vol. 12, p. 74.PubMedCrossRefGoogle Scholar
  18. Skuridin, S.G., Dubinskaya, V.A., Rudoi, V.M., et al., Effect of Gold Nanoparticles on DNA Package in Model Systems, Dokl. Biochem. Biophys., 2010, vol. 432, pp. 141–144.PubMedCrossRefGoogle Scholar
  19. Skuridin, S.G., Dubinskaya, V.A., Shtykova, E.V., et al., Fiksatsiya nanochastits zolota v strukture kvazinematicheskikh sloev, obrazovannykh molekulami DNK, Biochemistry (Moscow), Ser. A: Membr. Cell Biol., 2011, vol. 5, no. 2, pp. 191–198.Google Scholar
  20. Suganuma, R., Yanagimachi, R., and Meistrich, M.L., Decline in Fertility of Mouse Sperm with Abnormal Chromatin during Epididymal Passage as Revealed by ICSI, Hum. Reprod., 2005, vol. 20, pp. 3101–3108.PubMedCrossRefGoogle Scholar
  21. Takeda, K., Suzuki, K., Ishihara, A., et al., Nanoparticles Transferred from Pregnant Mice to Their Offspring Can Damage the Genital and Cranial Nerve Systems, J. Health Sci., 2009, vol. 55, pp. 95–102.CrossRefGoogle Scholar
  22. Wiwanitkit, V., Sereemaspun, A., and Rojanathanes, R., Effect of Gold Nanoparticles on Spermatozoa: The First World Report, Fertil. Steril., 2009, vol. 91, pp. 7–8.CrossRefGoogle Scholar
  23. Yevdokimov, Yu.M., Skuridin, S.G., Salyanov, V.I., et al., A Dual Effect of Au-Nanoparticles on Nucleic Acid Cholesteric Liquid-Crystalline Particles, J. Biomater. Nanotechnol., 2011, vol. 2, no. 4, pp. 461–471.CrossRefGoogle Scholar
  24. Yoshida, S., Hiyoshi, K., Ichinose, T., et al., Effect of Nanoparticles on the Male Reproductive System of Mice, Int. J. Androl., 2008, vol. 32, pp. 337–342.PubMedCrossRefGoogle Scholar
  25. Yoshida, S., Hiyoshi, K., Oshio, S., et al., Effects of Fetal Exposure to Carbon Nanoparticles on Reproductive Function in Male Offspring, Fertil. Steril., 2010, vol. 93, pp. 1695–1699.PubMedCrossRefGoogle Scholar
  26. Zakhidov, S.T., Marshak, T.L., Malolina, E.A., et al., Gold Nanoparticles Disturb Nuclear Chromatin Decondensation in Mouse Sperm in vitro, Biochemistry (Moscow), Ser. A: Membr. Cell Biol., 2010, vol. 4, no. 3, pp. 293–297.Google Scholar
  27. Zheng, Y., Hunting, D.J., Ayotte, P., and Sanche, L., Radiosensitization of DNA by Gold Nanoparticles Irradiated with High-Energy Electrons, Radiat. Res., 2008, vol. 169, pp. 19–27.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. T. Zakhidov
    • 1
    • 2
    Email author
  • S. M. Pavlyuchenkova
    • 1
    • 2
  • T. L. Marshak
    • 2
  • V. M. Rudoy
    • 3
  • O. V. Dement’eva
    • 3
  • I. A. Zelenina
    • 1
  • S. G. Skuridin
    • 4
  • A. A. Makarov
    • 5
  • A. N. Khokhlov
    • 1
  • Yu. M. Evdokimov
    • 4
  1. 1.Biological FacultyMoscow State UniversityMoscowRussia
  2. 2.Koltzov Institute of Developmental BiologyMoscowRussia
  3. 3.Frumkin Institute of Physical Chemistry and ElectrochemistryMoscowRussia
  4. 4.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  5. 5.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations