Skip to main content
Log in

Congruence analysis and combining of molecular genetic and morphological data in zoological systematics

  • Zoology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

A new algorithmic approach is proposed for congruence analysis of different types of data in zoological systematics. The algorithm is tested on actual data. A high degree of congruence is shown for morphometric and genetic distances in the tested set of species. Two directions of variation in both trait spaces have clearly appeared. The first direction discriminates families; the second discriminates orders. The traits responsible for these differences have been revealed. After uniting both distance matrixes, the morphological one and the molecular genetic one, into a single matrix, and displaying the summarized distances between species on a plane, the configuration of species remained principally unchanged. The principal directions of variations were preserved and marked the differences between orders, families, and genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramov, A.V. and Puzachenko, A.Yu., Geographic Variation of the Skull and the Taxonomy of Palaearctic Badgers (Mustelidae, Meles), Zool. Zh., 2006, vol. 85, no. 5, pp. 641–655.

    Google Scholar 

  • Abramson, N.I., Phylogeography: Results, Problems, and Prospects, Vest. VOGiS, 2007, vol. 11, no. 2, pp. 307–331.

    Google Scholar 

  • Abramson, N.I., Molecular Markers, Phylogeography, and the Search for Criteria for Discriminating between Species, Tr. Zool. Inst. Rus. Akad. Nauk, 2009, Suppl. 1, pp. 185–198.

  • Baab, K.L., Freidline, S.E., Wang, S.L., et al., Relationship of Cranial Robusticity to Cranial Form, Geography and Climate in Homo Sapiens, Am. J. Phys. Ant., 2010.

  • Bannikova, A.A., Molecular Markers and Modern Phylogenetics of Mammals, Zh. Obshch. Biol., 2004, vol. 65, no. 4, pp. 278–305.

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O.R.P., Gittleman, J.L., and Steel, M.A., The (Super)Tree of Life: Procedures, Problems, and Prospects, Ann. Rev. Ecol. Syst., 2002, vol. 33, pp. 265–289.

    Article  Google Scholar 

  • Conroy, C.J. and Cook, J.A., Molecular Systematics of a Holarctic Rodent (Microtus: Muridae), J. Mammal., 2000, vol. 81, pp. 344–359.

    Article  Google Scholar 

  • Von Cramon-Taubadel, N., Congruence of Individual Cranial Bone Morphology and Neutral Molecular Affinity Patterns in Modern Humans, Am. J. Phys. Ant., 2009, vol. 140, pp. 205–215.

    Article  Google Scholar 

  • Criscuolo, A., Berry, V., Douzery, E.J., et al., SDM: A Fast Distance-Based Approach for (Super) Tree Building in Phylogenomics, Syst. Biol., 2006, vol. 55, no. 5, pp. 740–755.

    Article  PubMed  Google Scholar 

  • Darroch, J.N. and Mosimann, J.E., Canonical and Principal Components of Shape, Biometrika, 1985, vol. 72, no. 2, pp. 241–252.

    Article  Google Scholar 

  • Darwin, C., On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, London: Murray, 1859.

    Google Scholar 

  • Dayrat, B., The Roots of Phylogeny: How Did Haeckel Build His Trees?, Syst. Biol., 2003, vol. 52, no. 4, pp. 515–527.

    PubMed  Google Scholar 

  • Davison, M, Mnogomernoe shkalirovanie: Metody naglyadnogo predstavleniya dannykh (Multidimensional Scaling: Methods for Visualizing Data), Moscow: Finansy i statistika, 1988.

    Google Scholar 

  • Dobzhansky, T., Genetics and the Origin of Species, New York: Columb. Univ. Press, 1937.

    Google Scholar 

  • Dokuchaev, N.E., Ohdachi, S., and Abel, H., Morphometric Status of Shrews of the Sorex caecutiens/shinto Group in Japan, Mamm. Study, 1999, vol. 24, pp. 67–78.

    Article  Google Scholar 

  • Dokuchaev, N.E., Kohno, N., and Ohdachi, S.D., Reexamination of Fossil Shrews (Sorex spp.) from the Middle Pleistocene of Honshu Island, Japan, Mamm. Study, 2010, vol. 35, pp. 157–168.

    Article  Google Scholar 

  • Dupal, T.A., Geograficheskaya izmenchivost’ i podvidovaya sistematika uzkocherepnoi polevki Microtus (Stenocranius) gregalis (Rodentia, Cricetidae), Zool. Zh., 2000, vol. 79, no. 4, pp. 87–94.

    Google Scholar 

  • Efimov, V.M. and Katokhin, A.V., The Use of Nonmetric Multidimensional Scaling to Handle Multi-Platform Microarray Expression Data, Vestn. VOGiS, 2009, vol. 13, no. 1, pp. 102–108.

    Google Scholar 

  • Glushchenko, V.I., Akulov, A.Yu., Leont’ev, D.V., and Utevskii, S.Yu., Osnovy obshchei sistematiki (Fundamentals of General Taxonomy), Kharkov: KhNU, 2004.

    Google Scholar 

  • Grant, V., Evolyutsionnyi protsess (The Evolutionary Process), Moscow: Mir, 1991.

    Google Scholar 

  • Grechko, V.V., Fedorova, L.V., Ryabinin, D.M., et al., The Use of Nuclear DNA Molecular Markers for Studying Speciation and Systematics as Exemplified by the “Lacerta agilis complex” (Sauria: Lacertidae), Mol. Biol. (Moscow), 2006, vol. 40, no. 1, pp. 51–62.

    Article  CAS  Google Scholar 

  • Gromov, I.M., Gureev, A.A., Novikov, G.A., et al., Mlekopitayushchie fauny SSSR (Mammals of the Fauna of the USSR), Moscow: Izd. Akad. Nauk SSSR, 1963, Part 1.

    Google Scholar 

  • Gromov, I.M. and Polyakov, I.Ya., Polevki (Microtinae). Fauna SSSR. Mlekopitayushchie (Voles (Microtinae). Fauna of the USSR. Mammals), Skarlato, O.A. Ed., Leningrad: Nauka, 1977, vol. 3.

    Google Scholar 

  • Haeckel, E., Generelle morphologie der organismen, Berlin: Reimer, 1866.

    Book  Google Scholar 

  • Hall, T.A., BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT, Nucl. Acids Symp. Ser., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  • Hammer, O., Harper, D.A.T., and Ryan, P.D., PAST: Paleontologica Statistics Software Package for Education and Data Analysis, Palaeontol. Electronica, 2001, vol. 4, no. 1, p. 9.

    Google Scholar 

  • Klingenberg, C.P. and Gidaszewski, N.A., Testing and Quantifying Phylogenetic Signals and Homoplasy in Morphometric Data, Syst. Biol., 2010, vol. 59, no. 3, pp. 245–261.

    Article  PubMed  CAS  Google Scholar 

  • Kovaleva, V.Yu., Efimov, V.M., Faleev, V.I., et al., Role of Genetic Factors in Landscape-Geographic Variation of the Water Vole (Arvicola terrestris L.), Russ. J. Ecol., 2006, vol. 37, no. 6, pp. 431–437.

    Article  Google Scholar 

  • Liu, F.G.R., Miyamoto, M.M., Freire, N.P., et al., Molecular and Morphological Supertrees for Eutherian (Placental) Mammals, Science, 2001, vol. 291, no. 5509, pp. 1786–1789.

    Article  PubMed  CAS  Google Scholar 

  • Lukashov, V.V., Molekulyarnaya evolyutsiya i filogeneticheskii analiz (Molecular Evolution and Phylogenetic Analysis), Moscow: BINOM, 2009.

    Google Scholar 

  • Mayr, E., Printsipy zoologicheskoi sistematiki (Principles of Zoological Systematics), Moscow: Mir, 1971.

    Google Scholar 

  • Mammal Species of the World. A Taxonomic and Geographic Reference, Wilson, D.E. and Reeder, D.M., Eds., Baltimore: J. Hopkins Univ. Press, 2005.

    Google Scholar 

  • Mantel, N., The Detection of Disease Clustering and a Generalized Regression Approach, Cancer Res., 1967, vol. 27, pp. 209–220.

    PubMed  CAS  Google Scholar 

  • Mantel, N. and Valand, R.S., A Technique of Nonparametric Multivariate Analysis, Biometrics, 1970, vol. 26, pp. 547–558.

    Article  PubMed  CAS  Google Scholar 

  • Mayr, E., What Is a Species, and what Is Not?, Philosophy Sci., 1996, vol. 63, pp. 262–277.

    Article  Google Scholar 

  • Milner, M., Bansode, A.G., Lawrence, A.L., et al., Molecular Phylogeny in 3-D, Curr. Issues Mol. Biol., 2004, vol. 6, no. 2, pp. 189–200.

    PubMed  CAS  Google Scholar 

  • Morphology, Shape and Phylogeny, Macleod, N. and Forey, P.L., Eds., London: Taylor and Francis, 2002.

    Google Scholar 

  • Mosimann, J.E., Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions, J. Am. Stat. Ass., 1970, vol. 65, pp. 930–945.

    Google Scholar 

  • Myers, E.M., Janzen, F.J., Adams, D.C., et al., Quantitative Genetics of Plastron Shape in Slider Turtles (Trachemys scripta), Evolution, 2006, vol. 60, no. 3, pp. 563–572.

    PubMed  CAS  Google Scholar 

  • Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P., et al., Bayesian Phylogenetic Analysis of Combined Data, Syst. Biol., 2004, vol. 53, no. 1, pp. 47–67.

    Article  PubMed  Google Scholar 

  • Ognev, S.I., Zveri SSSR i prilezhashchikh stran (Animals of the USSR and Adjacent Countries), Moscow: Izd. Akad. Nauk SSSR, 1950, vol. 7.

    Google Scholar 

  • Pavlinov, I.Ya, Vvedenie v sovremennuyu filogenetiku: Kladogeneticheskii aspekt (Introduction to Modern Phylogenetics: a Cladogenetic Aspect), Moscow: KMK, 2005.

    Google Scholar 

  • Pavlinov, I.Ya., Systematics of Modern Mammals, in Sb. Tr. Zool. Muzeya MGU (Collected Papers of the Zoological Museum of Moscow State University), Moscow: Izd. Mosk. Gos. Univ., 2006, vol. XLVII.

    Google Scholar 

  • Van de Peer, Y. and De Wachter, R., TREECON for Windows: A Software Package for the Construction and Drawing of Evolutionary Trees for the Microsoft Windows Environment, Comp. App. Biosci., 1994, vol. 10, pp. 569–570.

    Google Scholar 

  • Pisani, D., Benton, M.J., and Wilkinson, M., Congruence of Morphological and Molecular Phylogenies, Acta Biotheor., 2007, vol. 55, pp. 269–281.

    Article  PubMed  Google Scholar 

  • Puzachenko, A.Yu., Variability of the Skull of More Rats of the Genus Nannospalax (Spalacidea, Rodentia), Zool. Zh., 2006, vol. 85, no. 2, pp. 235–253.

    Google Scholar 

  • Rohlf, F.J. and Corti, M., Use of Two-Block Partial Least Squares to Study Covariation in Shape, Syst. Biol., 2000, vol. 49, no. 4, pp. 740–753.

    Article  PubMed  CAS  Google Scholar 

  • Sampson, P.D., Streissguth, A.P., Barr, H.M., et al., Neurobehavioral Effects of Prenatal Alcohol. Part II. Partial Least Squares Analysis, Neurotoxicol. Teratol., 1989, vol. 11, pp. 477–491.

    Article  PubMed  CAS  Google Scholar 

  • Severtsov, A.N, Glavnye napravleniya evolyutsionnogo protsessa. Morfobiologicheskaya teoriya evolyutsii (The Main Directions of the Evolutionary Process. The Morphobiological Theory of Evolution), Moscow: Izd. Mosk. Gos. Univ., 1967.

    Google Scholar 

  • Smith, H.F., Which Cranial Regions Reflect Molecular Distances Reliably in Humans? Evidence from Three-Dimensional Morphology, Am. J. Hum. Biol., 2009, vol. 21, no. 1, pp. 36–47.

    Article  PubMed  Google Scholar 

  • Sokal, R.R. and Sneath, P.H.A, Principles of Numerical Taxonomy, S. Francisco, California: Freeman, 1963.

  • Thorley, J., Wilkinson, M., and Charleston, M., The Information Content of Consensus Trees, in Advances in Data Science and Classification (Studies in Classification, Data Analysis, and Knowledge Organization), Berlin: Springer, 1998.

    Google Scholar 

  • Vasil’ev, A.G., Faleev, V.I., Galaktionov, Yu.K., et al., Realizatsiya morfologicheskogo raznoobraziya v prirodnykh populyatsiyakh mlekopitayushchikh (Realization of the Morphological Diversity in Natural Populations of Mammals), Novosibirsk: Izd. Sib. Otd. Ros. Akad. Nauk, 2003.

    Google Scholar 

  • Vasil’ev, A.G. and Vasil’eva, I.A., Gomologicheskaya izmenchivost’ morfologicheskikh struktur i epigeneticheskaya divergentsiya taksonov. Osnovy populyatsionnoi meronomii (Homological Variability of Morphological Structures and Epigenetic Divergence of Taxa. Principles of Population Merometry), Moscow: KMK, 2009.

    Google Scholar 

  • Vorontsov, N.N., Evolyutsiya pishchevaritel’noi sistemy gryzunov (Mysheobraznye) (The Evolution of the Digestive System of Rodents (Muridae)), Novosibirsk: Nauka, 1967.

    Google Scholar 

  • Wilkinson, M., Common Cladistic Information and Its Consensus Representation: Reduced Adams and Reduced Cladistic Consensus Trees and Profiles, Syst. Biol., 1994, vol. 43, pp. 343–368.

    Google Scholar 

  • Wortley, A.H. and Scotland, R., The Effect of Combining Molecular and Morphological Data in Published Phylogenetic Analyses, Syst. Biol., 2006, vol. 65, no. 4, pp. 677–685.

    Article  Google Scholar 

  • Zvychainaya, E.Yu. and Puzachenko, A.Yu., Craniometric Variability of the Genus Capra (Artiodactyla, Bovidae), Zool. Zh., 2009, vol. 88, no. 5, pp. 607–622.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Kovaleva.

Additional information

Original Russian Text © V.Yu. Kovaleva, S.A. Abramov, T.A. Dupal, V.M. Efimov, Yu.N. Litvinov, 2012, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2012, No. 4, pp. 404–414.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovaleva, V.Y., Abramov, S.A., Dupal, T.A. et al. Congruence analysis and combining of molecular genetic and morphological data in zoological systematics. Biol Bull Russ Acad Sci 39, 335–345 (2012). https://doi.org/10.1134/S1062359012030053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359012030053

Keywords

Navigation