Skip to main content

Advertisement

Log in

Dynamics of body mass and oxygen consumption in the ribbed newt Pleurodeles waltl ontogenesis: 1. Endotrophic development

  • Developmental Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The correlation between parameters of growth and energy metabolism in the example of embryonic and larval development of the ribbed newt Pleurodeles waltl has been studied. The wet body mass increases five times during this period due to water absorption by developing tissues and the yolk, and the dry mass decreases 1.18 times. The highest mass-specific growth rate and mass-specific rate of oxygen consumption of developing tissues was noticed at the 33rd stage of embryogenesis (13th–14th day of development). These indexes decreased after the hatching, but increased after larvae switched to external nutrition. Comparison of the studied parameters has identified a similar features in alteration of mass-specific growth rate, mass-specific rate of oxygen consumption, and watering of developing tissues in early development of the ribbed newt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, R.A., Growth and Gas Exchange of Embryonic Sea Turtles (Chelonia, Caretta), Copeia, 1981, no. 4, pp. 757–765.

  • Boell, E.J., Functional Differentiation in Embryonic Development. 11. Respiration and Cytochrome Oxidase Activity in Amblystoma punctatum, J. Exp. Zool., 1945, vol. 100, no. 2, pp. 331–352.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, D.F. and Seymour, R.S., Energy Conservation During the Delayed-Hatching Period in the Frog Pseudophryne bibroni, Physiol. Zool., 1985, vol. 58, no. 5, pp. 491–496.

    Google Scholar 

  • Briggs, R., Changes in Density of the Frog Embryo (Rana pipiens) during Development, J. Cell. Comp. Physiol., 1939, vol. 13, no. 1, pp. 77–89.

    Article  CAS  Google Scholar 

  • Brown, M., Collaps of the Archenteron in Embryos of Amblystoma and Rana, J. Exp. Zool., 1941, vol. 88, no. 1, pp. 95–106.

    Article  Google Scholar 

  • Burggren, W.W., Infantino, R.L., and Townsend, D.S., Developmental Changes in Cardiac and Metabolic Physiology of the Direct-Developing Tropical Frog Eleutherodactylus conqui, J. Exp. Biol., 1990, vol. 152, pp. 129–147.

    Google Scholar 

  • Endeward, V., Musa-Aziz, R., Cooper, G., et al., Evidence That Aquaporin 1 Is a Major Pathway for CO2 Transport Across the Human Erythrocyte Membrane, The FASEB J., 2006, vol. 20, pp. 1974–1981.

    Article  CAS  Google Scholar 

  • Feder, M.E., Effect of Developmental Stage and Body Size on Oxygen Consumption of Anuran Larvae: a Reappraisal, J. Exp. Zool., 1982, vol. 220, no. 1, pp. 33–42.

    Article  Google Scholar 

  • Fletcher, K. and Myant, N.B., Oxygen Consumption of Tadpoles during Metamorphosis, J. Physiol., 1959, vol. 145, pp. 353–368.

    CAS  PubMed  Google Scholar 

  • Funkhouser, A. and Mills, K.S., Oxygen Consumption During Spontaneous Amphibian Metamorphosis, Physiol. Zool., 1969, vol. 42, pp. 15–21.

    Google Scholar 

  • Hastings, D. and Burggren, W., Developmental Changes in Oxygen Consumption Regulation in Larvae of the South African Clawed Frog Xenopus laevis, J. Exp. Biol., 1995, vol. 198, pp. 2465–2475.

    PubMed  Google Scholar 

  • Kaufmann, N., Mathai, J.C., Hill, W.G., et al., Developmental Expression and Biophysical Characterization of a Drosophila melanogaster Aquaporin, Am. J. Physiol. Cell Physiol., 2005, vol. 289, pp. 397–407.

    Article  Google Scholar 

  • Nakhoul, N.L., Davis, B.A., Romero, M.F., and Boron, W.F., Effect of Expressing the Water Channel Aquaporin-1 on the CO2 Permeability of Xenopus Oocytes, Am. J. Physiol., 1998, vol. 274, pp. 543–548.

    Google Scholar 

  • Novikov, G.G., Rost i energetika razvitiya kostistykh ryb v rannem ontogeneze (Growth and Energetics of Development of Teleost Fishes in Early Ontogeny), Moscow: Editorial URSS, 2000.

    Google Scholar 

  • Ozernyuk, N.D. and Lelyanova, V.G., Characteristics of Energy Metabolism in Early Ontogeny of Fishes and Amphibians, Zh. Obshch. Biol., 1985, vol. 46, no. 6, pp. 778–785.

    Google Scholar 

  • Ozernyuk, N.D., Bioenergetika ontogeneza (Bioenergetics of Ontogeny), Moscow: Mosk. Gos. Univ., 2000.

    Google Scholar 

  • Ozernyuk, N.D., Energeticheskii obmen v rannem ontogeneze ryb (Energy Metabolism in Early Ontogeny of Fishes), Moscow: Nauka, 1985.

    Google Scholar 

  • Seymour R.S. Respiration of aquatic and terrestrial amphibian embryos, Am. Zool., 1999, vol. 39, pp. 261–270.

    Google Scholar 

  • Seymour, R.S. and Bradford, D.F., Gas Exchange Through the Jelly Capsule of the Terrestrial Eggs of the Frog, Pseudophryne bibroni, J. Comp. Physiol., 1987, vol. 157B, pp. 477–481.

    Google Scholar 

  • Seymour, R.S. and Loveridge, J.P., Embryonic and Larval Respiration in the Arboreal Foam Nests of the African Frog Chiromantis xerampelina, J. Exp. Biol., 1994, vol. 197, pp. 31–46.

    CAS  PubMed  Google Scholar 

  • Seymour, R.S. and Roberts, J.D., Embryonic Respiration and Oxygen Distribution in Foamy and Nonfoamy Egg Masses of the Frog Limnodynastes tasmaniensis, Phys. Zool., 1991, vol. 64, no. 5, pp. 1322–1340.

    Google Scholar 

  • Seymour, R.S., Roberts, J.D., Mitchell, N.J., and Blaylock, A.J., Influence of Environmental Oxygen Consumption on Development and Hatching of Aquatic Eggs of the Australian Frog, Crinia Georgiana, Physiol. Biochem. Zool., 2000, vol. 73, no. 4, pp. 501–507.

    Article  CAS  Google Scholar 

  • Territo, P.R. and Burggren, W.W., Cardio-Respiratory Ontogeny During Chronical Carbon Monoxide Exposure in the Clawed Frog, Xenopus laevis, J. Exp. Biol., 1998, vol. 201, pp. 1461–1472.

    CAS  PubMed  Google Scholar 

  • Tuft, P., Changes in the Osmotic Activity of the Blastocoel and Archenteron Contents during the Early Development of Xenopus laevis, Proc. Roy. Phys. Soc. Edinburgh., 1957, vol. 26, pp. 42–48.

    Google Scholar 

  • Vasetskii, S.G., The Spanish Newt Pleurodeles waltlii Michah, (Developmental Biology Objects), Moscow: Nauka, 1975, pp. 342–369.

    Google Scholar 

  • Verkman, A.S. and Mitra, A.K., Structure and Function of Aquaporin Water Channels, Am. J. Physiol. Renal Physiol., 2000, vol. 278, pp. F13–F28.

    CAS  PubMed  Google Scholar 

  • Verkman, A.S., More Than Just Water Channels: Unexpected Cellular Roles of Aquaporins, J. Cell Sci., 2005, vol. 118, pp. 3225–3232.

    Article  CAS  PubMed  Google Scholar 

  • Vladimirova, I.G., Alekseeva, T.A., and Nechaeva, M.V., Growth and Oxygen Consumption in Embryonic and Early Postembryonic Development of European Pond Turtle Emys orbicularis (Reptilia: Emydidae), Izv. Akad. Nauk, Ser. Biol., 2005, no. 2, pp. 214–220 [Biol. Bull., 2005, vol. 32, no. 2, pp. 172–178].

  • Vladimirova, I.G., Kleimenov, S.Yu., Alekseeva, T.A., and Radzinskaya, L.I., Specific Growth Rate and the Level of Energy Metabolism in the Ontogeny of Axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae), Izv. Akad. Nauk, Ser. Biol., 2003, no. 6, pp. 706–711 [Biol. Bull., 2003, vol. 30, no. 6, pp. 591–595].

  • Vladimirova, I.G., Radzinskaya, L.I., Alekseeva, T.A., and Kleimenov, S.Yu., Dynamics of Water and Energy Metabolism in Early Ontogeny of the European Green Toad Bufo viridis, in Biologicheskie resursy Belogo morya i vnutrennikh vodoemov Evropeiskogo Severa: Mater. XXVIII Mezhdunar. Konf. (Biological Resources of the White Sea and Inland Water Bodies of the European North, Proc. XXVIII Int. Conf.), Petrozavodsk, 2009, pp. 116–119.

  • Vladimirova, I.G., Zlochevskaya, M.B., and Ozernyuk, N.D., Respiration Rate Dynamics during Early Ontogenesis in Amphibians, Ontogenez, 2000, vol. 31, no. 5, pp. 350–354 [Russ. J. Dev. Biol., 2000, vol. 31, no. 5, pp. 293–296].

    CAS  PubMed  Google Scholar 

  • Vleck, C.M., Hoyt, D.F., and Vleck, D., Metabolism of Avian Embryos: Patterns in Altricial and Precocial Birds, Physiol. Zool., 1979 V. 52, no. 3, pp. 363–377.

    Google Scholar 

  • Wills, I.A., The Respiratory Rate of Developing Amphibian with Special Reference to Sex Differentiation, J. Exp. Zool., 1936, vol. 73, no. 3, pp. 481–510.

    Article  CAS  Google Scholar 

  • Zotin, A.I., Fiziologiya vodnogo obmena u zarodyshei ryb i kruglorotykh (Water Metabolism Physiology in Fish and Cyclostome Embryos), Moscow: Akad. Nauk SSSR, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Vladimirova.

Additional information

Original Russian Text © I.G. Vladimirova, S.Yu. Kleimenov, T.A. Alekseeva, 2010, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2010, No. 6, pp. 653–660.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vladimirova, I.G., Kleimenov, S.Y. & Alekseeva, T.A. Dynamics of body mass and oxygen consumption in the ribbed newt Pleurodeles waltl ontogenesis: 1. Endotrophic development. Biol Bull Russ Acad Sci 37, 558–564 (2010). https://doi.org/10.1134/S1062359010060026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359010060026

Keywords