Skip to main content
Log in

Investigation of the interaction of repair DNA polymerase β and autonomous 3′ → 5′-exonucleases TREX1 and TREX2

  • Biochemistry
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The possibility of interaction of recombinant proteins of human repair DNA polymerase β with proofreading 3′ → 5′-exonucleases TREX1 and TREX2 was investigated in vitro for the first time. The results of gel filtration analysis show the formation of a complex between 3′ → 5′-exonucleases mTREX1 and hTREX2 and DNA polymerase β. DNA polymerase activity is shown to increase four-fold in the presence of 3′ → 5′-exonuclease TREX2. The experiments with the use of immunodot and Western blot assays on the binding of DNA-polymerase β with 3′ → 5′-exonucleases TREX1 and TREX2 immobilized on a nitrocellulose membrane provided additional evidence on the direct association of the above proteins in complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakhanashvili, M., Grinberg, S., Bonda, E., et al., P53 in Mitochondria Enhances the Accuracy of DNA Synthesis, Cell Death Differ., 2008, vol. 15, pp. 1865–1874.

    Article  CAS  PubMed  Google Scholar 

  • Bakhanashvili, M., P53 Enhances the Fidelity of DNA Synthesis by Human Immunodeficiency Virus Type 1 Reverse Transcriptase, Oncogene, 2001, vol. 20, pp. 7635–7644.

    Article  CAS  PubMed  Google Scholar 

  • Belyakova, N.V., Kleiner, N.E., Kravetskaya, T.P., et al., Proofreading 3′ → 5′ Exonucleases Isolated from Rat Liver Nuclei, Eur. J. Biochem., 1993, vol. 217, pp. 493–500.

    Article  CAS  PubMed  Google Scholar 

  • Belyakova, N.V., Kravetskaya, T.P., Legina, O.K., et al., Complex of Repair DNA Polymerase β with Autonomous 3′ → 5′ Exonuclease Shows Increased Accuracy of DNA Synthesis, Izv. Akad. Nauk, Ser. Biol., 2007, vol. 34, no. 5, pp. 517–523 [Biol. Bull. (Engl. Transl), 2007, vol. 34, no. 5, pp. 427–433].

    Google Scholar 

  • Bennett, R.A., Wilson, D.M., Wong, D., and Demple, B., Interaction of Human Apurinic Endonuclease and DNA Polymerase in the Base Excision Repair Pathway, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 7166–7169.

    Article  CAS  PubMed  Google Scholar 

  • Canitrot, Y., Frechet, M., Servant, L., et al., Overexpression of DNA Polymerase: A Genomic Instability Enhancer Process, FASEB J., 1999a, vol. 13, pp. 1107–1111.

    CAS  PubMed  Google Scholar 

  • Canitrot, Y., Lautier, D., Laurent, G., et al., Mutator Phenotype of BCR-ABL Transfected Ba/F3 Cell Lines and Its Association with Enhanced Expression of DNA Polymerase, Oncogene, 1999b, vol. 18, pp. 2676–2680.

    Article  CAS  PubMed  Google Scholar 

  • Gassmann, M., Thommes, P., Weaser, T., and Hubscher, U., Efficient Production of Chicken Egg Yolk Antibodies against a Conserved Mammalian Protein, FASEB J., 1990, vol. 4, pp. 2528–2532.

    CAS  PubMed  Google Scholar 

  • Hoss, M., Robins, P., Naven, T.J.P., et al., A Human DNA Editing Enzyme Homologous to the Escherichia Coli DNA Q/Mut D Protein, EMBO J., 1999, vol. 18, pp. 3868–3875.

    Article  CAS  PubMed  Google Scholar 

  • Huang, P., Excision of Mismatched Nucleotides from DNA: A Potential Mechanism for Enhancing DNA Replication Fidelity by the Wild-Type P53 Protein, Oncogene, 1998, vol. 17, pp. 261–270.

    Article  CAS  PubMed  Google Scholar 

  • Hubscher, U., Maga, J., and Spadari, S., Eukaryotic DNA Polymerases, Annu. Rev. Biochem., 2002, vol. 71, pp. 133–163.

    Article  CAS  PubMed  Google Scholar 

  • Kamath-Loeb, A.S., Johansson, E., Burgers, P.M.J., and Loeb, L.A., Functional Interaction between the Werner Syndrome Protein and DNA Polymerase Delta, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 4603–4608.

    Article  CAS  PubMed  Google Scholar 

  • Kedar, P.S., Kim, S.-J., Robertson, A., et al., Direct Interaction between Mammalian DNA Polymerase and Proliferating Cell Nuclear Antigen, J. Biol. Chem., 2002, vol. 277, pp. 31115–31123.

    Article  CAS  PubMed  Google Scholar 

  • Krutyakov, V.M., Eukaryotic Error-Prone DNA Polymerases: The Presumed Roles in Replication, Repair, and Mutagenesis, Mol. Biol. (Moscow), 2006, vol. 40, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  • Kunkel, T.A., Biological Asymmetries and the Fidelity of Eukaryotic DNA Replication, BioEssays, 1992, vol. 14, pp. 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U.K., Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, T., Suppression of Spontaneous Mutagenesis in Human Cells by DNA Base Excision Repair, Mutat. Res., 2000, vol. 462, pp. 129–135.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Beard, W.A., Shock, D.D., et al., DNA Polymerase and Flap Endonuclease 1 Enzymatic Specificities Sustain DNA Synthesis for Long Patch Base Excision Repair, J. Biol. Chem., 2005, vol. 280, pp. 3665–3674.

    Article  CAS  PubMed  Google Scholar 

  • Loeb, L.A., A Mutator Phenotype in Cancer, Cancer Res., 2001, vol. 61, pp. 3230–3239.

    CAS  PubMed  Google Scholar 

  • Maki, H. and Kornberg, A., Proofreading by DNA Polymerase III of Escherichia coli Depends on Cooperative Interaction of the Polymerase and Exonuclease Subunits, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 4389–4392.

    Article  CAS  PubMed  Google Scholar 

  • Mazur, D.J. and Perrino, F.W., Excision of 3 Termini by the TREX1 and TREX2 3′ → 5′-Exonucleases. Characterization of the Recombinant Proteins, J. Biol. Chem., 2001, vol. 276, pp. 17022–17029.

    Article  CAS  PubMed  Google Scholar 

  • Miles, J. and Formosa, T., Protein Affinity Chromatography with Purified Yeast DNA Polymerase Alpha Detects Proteins That Bind to DNA Polymerase, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 1276–1280.

    Article  CAS  PubMed  Google Scholar 

  • Nasheuer, H.-P. and Grosse, F., DNA Polymerase-Primase from Calf Thymus. Determination of the Polypeptide Responsible for Primase Activity, J. Biol. Chem., 1988, vol. 263, pp. 8981–8988.

    CAS  PubMed  Google Scholar 

  • Perrino, F.W. and Loeb, L.A., Proofreading by the Subunit of Escherichia coli DNA Polymerase III Increases the Fidelity of Calf Thymus DNA Polymerase, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 3085–3088.

    Article  CAS  PubMed  Google Scholar 

  • Perrino, F.W., Harvey, S., McMillin, S., and Hollis, T., The Human TREX2 3′ → 5′-Exonuclease Structure Suggests a Mechanism for Efficient Nonprocessive DNA Catalysis, J. Biol. Chem., 2005, vol. 280, pp. 15212–15218.

    Article  CAS  PubMed  Google Scholar 

  • Ronzhina, N.L., Belyakova, N.V., Kravetskaya, T.P., and Krutyakov, V.M., Associated with DNA Polymerases and Autonomic 3′-5′-Exonucleases from Invertebrates, Protozoa and Bacteria, Zh. Evol. Biokhim. Fiziol., 2002, vol. 38, pp. 125–130.

    CAS  PubMed  Google Scholar 

  • Schaffner, W. and Weissmann, C., A Rapid Sensitive and Specific Method for the Determination of Protein in Dilute Solution, Anal. Biochem., 1973, vol. 56, pp. 502–514.

    Article  CAS  PubMed  Google Scholar 

  • Servant, L., Cazaux, C., Bieth, A., et al., A Role for DNA Polymerase in Mutagenic UV Lesion Bypass, J. Biol. Chem., 2002, vol. 277, pp. 50046–50053.

    Article  CAS  PubMed  Google Scholar 

  • Proofreading Function of Autonomous 3′ → 5′ Exonucleases in DNA Synthesis Catalyzed by DNA Polymerase from Rat Liver, Mol. Biol., 1999, vol. 33, pp. 758–763 [Mol. Biol. (Moscow) (Eng. Transl.), 1999, vol. 33, pp. 659–665].

  • Shevelev, I.V., Belyakova, N.V., Kravetskaya, T.P., and Krutyakov, V.M., Autonomous 3′ → 5′-Exonucleases Can Proofread for DNA Polymerase from Rat Liver, Mutat. Res., 2000, vol. 459, pp. 237–242.

    CAS  PubMed  Google Scholar 

  • Shevelev, I.V., Belyakova, N.V., Kravetskaya, T.P., and Krutyakov, V.M., The Correcting Role of Autonomous 3′ → 5′ Exonucleases Contained in Mammalian Multienzyme DNA Polymerase Complexes, Mol. Biol., 2002, vol. 36, pp. 1054–1061 [Mol. Biol. (Moscow) (Eng. Transl.), 2002a, vol. 36, no. 6, pp. 857–863].

    Article  Google Scholar 

  • Shevelev, I.V., Kravetskaya, T.P., Legina, O.K., and Krutyakov, V.M., “External” Proofreading of DNA Replication Errors and Mammalian Autonomous 3′ → 5′ Exonucleases, Mutat. Res., 1996, vol. 352, pp. 51–55.

    PubMed  Google Scholar 

  • Shevelev, I.V., Ramadan, K., and Hubscher, U., The TREX2 3′ → 5′ Exonuclease Physically Interacts with DNA Polymerase and Increases Its Accuracy, Sci. World J., 2002, vol. 2, pp. 275–281.

    CAS  Google Scholar 

  • Silva De, U., Choudhury, S., Bailey, S.L., et al., The Crystal Structure of TREX1 Explains the 3 Nucleotide Specificity and Release a Polyproline II Helix for Protein Partnering, J. Biol. Chem., 2007, vol. 282, pp. 10537–10543.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Belyakova.

Additional information

Original Russian Text © N.V. Belyakova, O.K. Legina, N.L. Ronzhina, I.V. Shevelev, V.M. Krutiakov, 2010, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2010, No. 5, pp. 547–553.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyakova, N.V., Legina, O.K., Ronzhina, N.L. et al. Investigation of the interaction of repair DNA polymerase β and autonomous 3′ → 5′-exonucleases TREX1 and TREX2. Biol Bull Russ Acad Sci 37, 464–470 (2010). https://doi.org/10.1134/S1062359010050043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359010050043

Keywords

Navigation