Skip to main content
Log in

Stem cells in human amniotic fluid

  • Cell Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Amniotic fluid (AF) contains a heterogeneous population of cells of fetal origin in which stem cells are present. These cells are characterized by the expression of mesenchymal (CD73, CD90, CD105) and neural (Nestin, β3-tubulin, NEFH) markers, and also some markers of pluripotency (Oct4, Nanog), and they are capable of differentiating into diverse derivatives in vitro. We have shown that epithelial markers (Keratin 19, Keratin 18, and p63) are expressed in AF stem cells simultaneously with mesenchymal ones. During cloning, colonies of cells with fibroblastoid and epithelioid cells are formed. The status and differentiation potential of stem cells from AF have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anker in’ t, P.S., Scherjon, S.A., Kleijburg-van der Keur, C., et al. Amniotic Fluid As a Novel Source of Mesenchymal Stem Cells for Therapeutic Transplantation, Blood, 2003, vol. 102, no. 4, pp. 1548–1549.

    Article  Google Scholar 

  • Bertani, N., Matatesta, P., Volpi, G., et al., Neurogenic Potential of Human Mesenchymal Stem Cells Revisited: Analysis by Immunostaining, Timelapse Video and Microarray, J. Cell Sci., 2005, vol.118, pp. 3925–3936.

    Article  CAS  PubMed  Google Scholar 

  • Campioni, D., Rizzo, R., Stignani, M., et al., A Decreased Positivity for CD90 on Human Mesenchymal Stromal Cells (MSCs) Is Associated with a Loss of Immunosuppressive Activity by MSCs, Cytometry Part B: Clin. Cytom., 2009, vol.76, no. 3, pp. 225–230.

    Article  Google Scholar 

  • Carraro, G., Perin, L., Sedrakyan, S., et al., Human Amniotic Fluid Stem Cells Can Integrate and Differentiate Into Epithelial Lung Lineages, Stem Cells, 2008, vol.26, no. 11, pp. 2902–2911.

    Article  CAS  PubMed  Google Scholar 

  • Chang, F., Desmoplastic Small Round Cell Tumors: Cytologic, Histologic, and Immunohistochemical Features, Arch. Pathol. Lab. Med., 2006, vol.130, no. 5, pp. 728–732.

    PubMed  Google Scholar 

  • Chiavegato, A., Bollini, S., Pozzobon, M., et al., Human Amniotic Fluid-Derived Stem Cells Are Rejected after Transplantation in the Myocardium of Normal, Ischemic, Immuno-Suppressed or Immuno-Deficient Rat, J. Mol. Cell. Cardiol., 2007, vol.42, no. 4, pp. 746–759.

    Article  CAS  PubMed  Google Scholar 

  • Coppi de, P., Bartsch, G., Jr., Siddiqui, M.M., et al., Isolation of Amniotic Stem Cells with Potential for Therapy, Nat. Biotechnol. 2007, vol.25, no. 1, pp. 100–106.

    Article  PubMed  Google Scholar 

  • Dai, W. and Kloner, R.A., Myocardial Regeneration by Human Amniotic Fluid Stem Cells: Challenges to Be Overcome, J. Mol. Cell. Cardiol., 2007, vol.42, pp. 730–732.

    Article  CAS  PubMed  Google Scholar 

  • Davydova, D.A., Vorotelyak, E.A., Smirnova, Yu.A., et al Cell Phenotypes in Human Amniotic Fluid, Acta Naturae, 2009, no. 2, pp. 98–103.

  • Delo, D.M., Coppi De P., Bartsch G.Jr., Atala A. Amniotic Fluid and Placental Stem Cells, in Methods in Enzymology, Burlington: Elsevier Acad. Press 2006, vol.419, pp. 426–438.

    Google Scholar 

  • Ditadi, A., Coppi De P., Picone O. Et Al. Human and Murine Amniotic Fluid c-Kit+Lin-Cells Display Hematopoietic Activity, Blood, 2009, vol.113, no. 17, pp. 3953–3960.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson, A.E., Cai, J., Yang, M., and Iacovitti, L., Human Amniotic Fluid Stem Cells Do Not Differentiate into Dopamine Neurons in vitro or after Transplantation in vivo, Stem Cells Dev., 2009, vol.18, no. 7, pp. 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  • Ferdaos, N., Nathan, S., and Nordin, N., Prospective Full-Term-Derived Pluripotent Amniotic Fluid Stem (AFS) Cells, Med. J. Malaysia, 2008, vol.63, Suppl. A, pp. 75–76.

    PubMed  Google Scholar 

  • Fuchs, J.R., Kaviani, A., Oh, J.-T., et al., Diaphragmatic Reconstruction with Autologous Tendon Engineered from Mesenchymal Amniocytes, J. Pediatr. Surg., 2004, vol.39, no. 6, pp. 834–838.

    Article  PubMed  Google Scholar 

  • Gemmis de, P., Lapucci, C., Bertelli, M., et al., A Real-Time PCR Approach to Evaluate Adipogenic Potential of Amniotic Fluid-Derived Human Mesenchymal Stem Cells, Stem Cells Dev., 2006, vol.15, pp. 719–728.

    Article  PubMed  Google Scholar 

  • Hampton, T., Stem Cells Obtained from Amniotic Fluid, JAMA, 2007, vol.297, no. 8, p. 795.

    Article  CAS  PubMed  Google Scholar 

  • Hoehn, H., Bryant, E.M., Karp, L.E., and Martin, G.M., Cultivated Cells from Diagnostic Amniocentesis in Second Trimester Pregnancies. I. Clonal Morphology and Growth Potential, Pediatr. Res., 1974, vol.8, pp. 746–754.

    Article  CAS  PubMed  Google Scholar 

  • Kiseleva, E.V. and Vasil’ev, A.V., Multipotent Cells of Adipose Tissue Stroma, in Biologiya stvolovykh kletok i kletochnye tekhnologii (Stem Cell Biology and Cellular Technologies), Moscow: Meditsina, 2009, vol.2, pp. 124–162.

    Google Scholar 

  • Kiseleva, E.V., Chermnykh, E.S., Vorotelyak, E.A., et al., Comparison of Fibroblasts-Like Cell Differentiation Capacities of Human Bone Marrow, Adipose Tissue, Hair Papilla and Dermal Fibroblasts, Tsitologiia, 2009, vol.51, no. 1, pp. 12–19.

    CAS  PubMed  Google Scholar 

  • Kolambkar, Y.M., Peister, A., Soker, S., et al., Chondrogenic Differentiation of Amniotic Fluid-Derived Stem Cells, J. Mol. Histol., 2007, vol.38, no. 5, pp. 405–413.

    Article  CAS  PubMed  Google Scholar 

  • Kunisaki, S.M., Freedman, D.A., and Fauza, D.O., Fetal Tracheal Reconstruction with Cartilaginous Grafts Engineered from Mesenchymal Amniocytes, J. Pediatr. Surg., 2006, vol.41, pp. 675–682.

    Article  PubMed  Google Scholar 

  • Kunisaki, S.M., Fuchs, J.R., Steigman, S.A., and Fauza, D.O., A Comparative Analysis of Cartilage Engineered from Different Perinatal Mesenchymal Progenitor Cells, Tissue Eng., 2007, vol.13, no. 11, pp. 2633–2644.

    Article  CAS  PubMed  Google Scholar 

  • Lanfranchi, A., Porta, F., and Chirico, G., Stem Cells and the Frontiers of Neonatology, Early Hum. Dev., 2009, vol. 85,Suppl. 1, pp. 15–18.

    Article  Google Scholar 

  • Marcus, A.J. and Woodbury, D., Fetal Stem Cells from Extra-Embryonic Tissues: Do Not Discard, J. Cell. Mol. Med., 2008, vol.12, no. 3, pp. 730–742.

    Article  CAS  PubMed  Google Scholar 

  • Mazzucchelli, I., Avanzini, M.A., Ciardelli, L., et al., Human Amniotic Fluid Cells Are Able to Produce IL-6 and IL-8, Am. J. Reprod. Immunol., 2004, vol.51, no. 3, pp. 198–203.

    Article  PubMed  Google Scholar 

  • Nadri, S. and Soleimani, M., Comparative Analysis of Mesenchymal Stromal Cells from Murine Bone Marrow and Amniotic Fluid, Cytotherapy, 2007, vol.9, no. 8, pp. 729–737.

    Article  CAS  PubMed  Google Scholar 

  • Niazi, M., Coleman, D.V., Mowbray, J.F., and Blunt, S., Tissue Typing Amniotic Fluid Cells: Potential Use for Detection of Contaminating Maternal Cells, J. Med. Genet., 1979, vol.16, pp. 21–23.

    Article  CAS  PubMed  Google Scholar 

  • Pan, H.-C., Chen, C.-J., Cheng, F.-C., et al., Combination of G-CSF Administration and Human Amniotic Fluid Mesenchymal Stem Cell Transplantation Promotes Peripheral Nerve Regeneration, Neurochem. Res., 2009, vol.34, no. 3, pp. 518–527.

    Article  CAS  PubMed  Google Scholar 

  • Payushina, O.V., Starostin, V.I., and Khrushchov, N.G., Multipotent Mesenchymal Stromal Cells: Characteristics, Potential for Differentiation, and Prospects of Use in Clinical Practice, in Biologiya stvolovykh kletok i kletochnye tekhnologii (Stem Cell Biology and Cellular Technologies), Moscow: Meditsina, 2009, vol.2, pp. 100–123.

    Google Scholar 

  • Păunescu, V., Deak, E., Herman, D., et al., In vitro Differentiation of Human Mesenchymal Stem Cells to Epithelial Lineage, J. Cell. Mol. Med., 2007, vol.11, no. 3, p. 502508.

    Google Scholar 

  • Peister, A., Deutsch, E.R., Kolambkar, Y., et al., Amniotic Fluid Stem Cells Produce Robust Mineral Deposits on Biodegradable Scaffolds, Tissue Eng., 2009, vol.15, no. 10, pp. 3129–3138.

    Article  CAS  Google Scholar 

  • Perin, L., Sedrakyan, S., Da, Sacco S., and De Filippo, R., Characterization of Human Amniotic Fluid Stem Cells and Their Pluripotential Capability, in Methods in Cell Biology, Burlington: Elsevier Acad. Press, 2008, vol.86, pp. 85–99.

    Google Scholar 

  • Prusa, A.-R. and Hengstschläger, M., Amniotic Fluid Cells and Human Stem Cell Research—A New Connection, Med. Sci. Monit., 2002, vol.8, no. 11, pp. 253–257.

    Google Scholar 

  • Romanov, Y.A., Svintsitskaya, V.A., and Smirnov, V.N., Searching for Alternative Sources of Postnatal Human Mesenchymal Stem Cells: Candidate MSC-Like Cells from Umbilical Cord, Stem Cells, 2003, vol.21, pp. 105–110.

    Article  PubMed  Google Scholar 

  • Sartore, S., Lenzi, M., Angelini, A., et al., Amniotic Mesenchymal Cells Autotransplanted in a Porcine Model of Cardiac Ischemia Do Not Differentiate to Cardiogenic Phenotypes, Eur. J. Cardiothorac. Surg., 2005, vol.28, no. 5, pp. 677–684.

    Article  PubMed  Google Scholar 

  • Saulnier, N., Lattanzi, W., Puglisi, M.A., et al., Mesenchymal Stromal Cells Multipotency and Plasticity: Induction toward the Hepatic Lineage, Eur. Rev. Med. Pharmacol. Sci., 2009, vol.13, no. Suppl. 1, pp. 71–78.

    PubMed  Google Scholar 

  • Schmidt, D., Achermann, J., Odermatt, B., et al., Prenatally Fabricated Autologous Human Living Heart Valves Based on Amniotic Fluid Derived Progenitor Cells As Single Cell Source, Circulation, 2007, vol.116, no. 11.

  • Sessarego, N., Parodi, A., Podest, M., et al., Multipotent Mesenchymal Stromal Cells from Amniotic Fluid: Solid Perspectives for Clinical Application, Haematologica, 2008, vol. 93, no. 3, pp. 339–346.

    Article  PubMed  Google Scholar 

  • Shi, Y., Induced Pluripotent Stem Cells, New Tools for Drug Discovery and New Hope for Stem Cell Therapies, Curr. Mol. Pharmacol., 2009, vol.2, no. 1, pp. 15–18.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, M.M. and Atala, A., Amniotic Fluid-Derived Pluripotential Cells, in Handbook of Stem Cells, Burlington: Elsevier Acad. Press, 2004, vol.2, pp. 175–179.

    Chapter  Google Scholar 

  • Siegel, N., Valli, A., Fuchs, C., et al., Expression of MTOR Pathway Proteins in Human Amniotic Fluid Stem Cells, Int. J. Mol. Med., 2009, vol.23, pp. 779–784.

    CAS  PubMed  Google Scholar 

  • Steigman, S.A., Ahmed, A., Shanti, R.M., et al., Sternal Repair with Bone Grafts Engineered from Amniotic Mesenchymal Stem Cells, J. Pediatr. Surg., 2009, vol.44, pp. 1120–1126.

    Article  PubMed  Google Scholar 

  • Takahashi, K. and Yamanaka, S., Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, 2006, vol.126, no. 4, pp. 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., et al., Embryonic Stem Cell Lines Derived from Human Blastocysts, Science, 1998, vol.282, pp. 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  • Toda, A., Okabe, M., Yoshida, T., and Nikaido, T., The Potential of Amniotic Membrane/Amnion-Derived Cells for Regeneration of Various Tissues, J. Pharmacol. Sci., 2007, vol.105, pp. 215–228.

    Article  CAS  PubMed  Google Scholar 

  • Torricelli, F., Brizzi, L., Bernabei, P.A., et al., Identification of Hematopoietic Progenitor Cells in Human Amniotic Fluid Before the 12th Week of Gestation, Ital. J. Anat. Embryol., 1993, vol.98, no. 2, pp. 119–126.

    CAS  PubMed  Google Scholar 

  • Tsai, M.-S., Hwang, S.-M., Tsai, Y.-L., et al., Clonal Amniotic Fluid-Derived Stem Cells Express Characteristics of Both Mesenchymal and Neural Stem Cells, Biol. Reprod., 2006, vol.74, pp. 545–551.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, M.-S., Lee, J.-L., Chang, Y.-J., and Hwang, S.-M., Isolation of Human Multipotent Mesenchymal Stem Cells from Second-Trimester Amniotic Fluid using a Novel Two-Stage Culture Protocol, Hum. Reprod., 2004, vol.19, no. 6, pp. 1450–1456.

    Article  PubMed  Google Scholar 

  • Virtanen, I., Von Koskull, H., Lehto, V.-P et al., Cultured Human Amniotic Fluid Cells Characterized with Antibodies Against Intermediate Filaments in Indirect Immunofluorescence Microscopy, J. Clin. Invest., 1981, vol.68, pp. 1348–1355.

    Article  CAS  PubMed  Google Scholar 

  • Walther, G., Gekas, J., and Bertrand, O.F., Amniotic Stem Cells for Cellular Cardiomyoplasty: Promises and Premises, Catheter. Cardiovasc. Interv., 2009, vol.73, pp. 917–924.

    Article  PubMed  Google Scholar 

  • Wang, H., Chen, S., Cheng, X., et al., Differentiation of Human Amniotic Fluid Stem Cells into Cardiomyocytes through Embryonic Body Formation, Chin. J. Biotechn., 2008, vol.24, no. 9, pp. 1582–1587.

    CAS  Google Scholar 

  • Yan, W.H., Lin, A., Chen, X.J., et al., Immunological Aspects of Human Amniotic Fluid Cells: Implication for Normal Pregnancy, Cell Biol. Int., 2008, vol.32, no. 1, pp. 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Yen, B.L., Huang, H.I., Chien, C.C., et al., Isolation of Multipotent Cells from Human Term Placenta, Stem Cells, 2005, vol.23, no. 1, pp. 3–9.

    Article  CAS  PubMed  Google Scholar 

  • You, Q., Tong, X., Guan, Y., et al., The Biological Characteristics of Human Third Trimester Amniotic Fluid Stem Cells, J. Int. Med. Res., 2009, vol.37, pp. 105–112.

    CAS  PubMed  Google Scholar 

  • Zhang, P., Baxter, J., Vinod, K., et al., Endothelial Differentiation of Amniotic Fluid-Derived Stem Cells: Synergism of Biochemical and Shear Force Stimuli, Stem Cells Dev., 2009, vol.18, no. 9, pp. 1299–1308.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y.B., Gao, Z.L., Xie, C., et al., Characterization of Hepatogenic Differentiation of Mesenchymal Stem Cells from Human Amniotic Fluid and Human Bone Marrow: A Comparative Study, Cell Biol. Int., 2008, vol.32, no. 11, pp. 1439–1448.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Davydova.

Additional information

Original Russian Text © D.A. Davydova, 2010, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2010, No. 5, pp. 517–526.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davydova, D.A. Stem cells in human amniotic fluid. Biol Bull Russ Acad Sci 37, 437–445 (2010). https://doi.org/10.1134/S1062359010050018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359010050018

Keywords

Navigation