Skip to main content
Log in

Effect of nanoparticles on aquatic organisms

  • Ecology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

This paper summarizes the data on the effect of engineered nanoparticles on aquatic organisms. The issues of penetration and accumulation of nanoparticles in the body of aquatic organisms and their toxic effect, biotransformation, and migration along food webs are considered. It is demonstrated that the behavior of nanomaterials in the environment and their effect on living organisms have been studied insufficiently and require close attention, because their release into the environment will increase in the very near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrievsky, G.V., Klochkov, V.K., and Derevyanchenko, L.I., Is C60 Fullerene Molecule Toxic?!, Fullerenes, Nanotubes, Carbon Nanostructures, 2005, vol. 13, no. 4, pp. 363–376.

    Article  CAS  Google Scholar 

  • Baun, A., Hartmann, N.B., Grieger, K., and Kusk, K.O., Ecotoxicity of Engineered Nanoparticles to Aquatic Invertebrates: A Brief Review and Recommendations for Future Toxicity Testing, Ecotoxicology, 2008a, vol. 17, pp. 387–395.

    Article  PubMed  CAS  Google Scholar 

  • Baun, A., Sorensen, S.N., Rasmussen, R.F., et al., Toxicity and Bioaccumulation of Xenobiotic Organic Compounds in the Presence of Aqueous Suspensions of Aggregates of Nano-C(60), Aquat. Toxicol., 2008b, vol. 86, no. 3, pp. 379–387.

    Article  PubMed  CAS  Google Scholar 

  • White Book on Nanotechnologies. Studies in Nanoparticles, Nanostructures, and Nanocomposites in the Russian Federation, in Mater. Pervogo vseros. soveshch. uchenykh, inzhenerov i proizvoditelei v oblasti nanotekhnologii (Proc. First All-Russia Congress of Scientists, Engineers, and Manufacturers in Nanotechnology), Moscow: LKI, 2008, p. 344.

    Google Scholar 

  • Borm, P., Robbins, D., Haubold, S., et al., The Potential Risks of Nanomaterials: A Review Carried out for ECETOC, Particle, Fibre Toxicol., 2006, vol. 3, no. 1, pp. 1743–8977.

    Article  CAS  Google Scholar 

  • Brant, J., Lecoanet, H., and Wiesner, M.R., Aggregation and Deposition Characteristics of Fullerene Nanoparticles in Aqueous Systems, J. Nanopart. Res., 2005, vol. 7, pp. 545–553.

    Article  CAS  Google Scholar 

  • Cheng, J., Flahaut, E., and Cheng, S.H., Effect of Carbon Nanotubes on Developing Zebrafish (Danio rerio) Embryos, Env. Toxicol. Chem., 2007, vol. 26, no. 4, pp. 708–716.

    Article  CAS  Google Scholar 

  • Dubertret, B., Skourides, P., Norris, D.J., et al., In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles, Science, 2002, vol. 298, no. 5599, pp. 1759–1762.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, L.K., Jinschek, J.R., Vikesland P.J. C60 Colloid Formation in Aqueous Systems: Effects of Preparation Method on Size, Structure, and Surface Charge, Environ. Sci. Technol., 2008, vol. 42, no. 1, pp. 173–178.

    Article  PubMed  CAS  Google Scholar 

  • EPA Nanotechnology White Paper, Washington, DC: U.S. Environmental Protect. Agency, 2007, p. 120.

  • Elgrabli, D., Abella-Gallart, S., Aguerre-Chariol, O., et al., Effect of BSA on Carbon Nanotube Dispersion for in Vivo and in Vitro Studies, Nanotoxicology, 2007, vol. 1, no. 4, pp. 266–278.

    Article  CAS  Google Scholar 

  • Elias, A.L. and Carrero-Sanchez, J.C., Terrones H, Et Al. Viability Studies of Pure Carbon- and Nitrogen-Doped Nanotubes with Entamoeba histolytica: From Amoebicidal to Biocompatible Structures, Small, 2007, vol. 3, no. 10, pp. 1723–1729.

    Article  PubMed  CAS  Google Scholar 

  • Espinasse, B., Hotze, E.M., and Wiesner, M.R., Transport and Retention of Colloidal Aggregates of C60 in Porous Media: Effects of Organic Macromolecules, Ionic Composition, and Preparation Method, Env. Sci Technol., 2007, vol. 41, pp. 7396–7402.

    Article  CAS  Google Scholar 

  • Federici, G., Shaw, B.J., and Handy, R.D., Toxicity of Titanium Dioxide Nanoparticles Next Term to Rainbow Trout (Oncorhynchus mykiss): Gill Injury, Oxidative Stress, and Other Physiological Effects, Aquat. Toxicol., 2007, vol. 84, no. 4, pp. 415–430.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, N.M., Rogers, N.J., Apte, S.C., et al., Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility, Environ. Sci. Technol., 2007, vol. 41, no. 24, pp. 8484–8490.

    Article  PubMed  CAS  Google Scholar 

  • Gagne, F., Auclair, J., Turcotte, P., et al., Ecotoxicity of CdTe Quantum Dots to Freshwater Mussels: Impacts on Immune System, Oxidative Stress and Genotoxicity, Aquat. Toxicol., 2008, vol. 86, no. 3, pp. 333–340.

    Article  PubMed  CAS  Google Scholar 

  • Gharbi, N., Pressac, M., Hadchouel, M., et al., [60]Fullerene Is a Powerful Antioxidant in Vivo with No Acute or Subacute Toxicity, Nano Lett., 2005, vol. 5, no. 12, pp. 2578–2585.

    Article  PubMed  CAS  Google Scholar 

  • Griffitt, R.J., Luo, J., Gao, J., et al., Effects of Particle Composition and Species on Toxicity of Metallic Nanomaterials in Aquatic Organisms, Env. Toxicol. Chem., 2008, vol. 27, no. 9, pp. 1972–1978.

    Article  CAS  Google Scholar 

  • Griffitt, R.J., Weil, R., Hyndman, K.A., et al., Exposure to Copper Nanoparticles Causes Gill Injury and Acute Lethality in Zebrafish (Danio rerio), Env. Sci. Techn., 2007, vol. 41, no. 23, pp. 8178–8186.

    Article  CAS  Google Scholar 

  • Handy, R.D., Kammer, F., Lead, J.R., et al., The Ecotoxicology and Chemistry of Manufactured Nanoparticles, Ecotoxicology, 2008, vol. 17, no. 4, pp. 287–314.

    Article  PubMed  CAS  Google Scholar 

  • Henry, T.B., Menn, F.-M., Fleming, J.T., et al., Attributing Effects of Aqueous C60 Nano-Aggregates to Tetrahydrofuran Decomposition Products in Larval Zebrafish by Assessment of Gene Expression, Env. Health. Perspect., 2007, vol. 115 P, pp. 1059–1065.

    Article  CAS  Google Scholar 

  • Holbrook, R.D., Murphy, K.E., Morrow, J.B., and Cole, K.D., Trophic Transfer of Nanoparticles in a Simplified Invertebrate Food Web, Nat. Nanotechnol., 2008, vol. 3, no. 6, pp. 352–355.

    Article  PubMed  CAS  Google Scholar 

  • Hyung, H., Fortner, J.D., Hughes, J.B., and Kim, J.-H., Natural Organic Matter Stabilizes Carbon Nanotubes in the Aqueous Phase, Environ. Sci. Technol., 2007, vol. 41, pp. 17–184.

    Article  CAS  Google Scholar 

  • Ingle, T.M., Alexander, R., Bouldin, J., and Buchanan, R.A., Absorption of Semiconductor Nanocrystals by the Aquatic Invertebrate Ceriodaphnia dubia, Bull. Env. Contam. Toxicol., 2008, vol. 81, pp. 249–252.

    Article  CAS  Google Scholar 

  • Isaacson, C.W., Usenko, C.Y., Tanguay, R.L., and Field, J.A., Quantification of Fullerenes By LC/ESI-MS and its Application to in Vivo Toxicity Assays, Analyt. Chem., 2007, vol. 79, no. 23, pp. 9091–9097.

    Article  CAS  Google Scholar 

  • Jain, A.K., Mehra, N.K., Lodhi, N., et al., Carbon Nanotubes and Their Toxicity, Nanotoxicology, 2007, vol. 1, no. 3, pp. 167–197.

    Article  CAS  Google Scholar 

  • Johnston, B.D., Scown, T.M., Moger, J., et al., Bioavailability of Nanoscale Metal Oxides TiO2, CeO2, and ZnO to Fish, Environ. Sci. Technol., 2010, vol. 44, no. 3, pp. 1144–1151.

    Article  PubMed  CAS  Google Scholar 

  • Kaegi, R., Ulrich, A., Sinnet, B., et al., Synthetic TiO2 Nanoparticle Emission from Exterior Facades into the Aquatic Environment, Env. Pollut., 2008, vol. 156, no. 2, pp. 233–239.

    Article  CAS  Google Scholar 

  • Kam, N.W.S., Jessop, T.C., Wender, P.A., and Dai, H., Nanotube Molecular Transporters: Internalization of Carbon Nanotube-Protein Conjugates Into Mammalian Cells, J. ACS, 2004, vol. 126, no. 22, pp. 6850–6851.

    CAS  Google Scholar 

  • Ke, P.C. and Qiao, R., Carbon Nanomaterials in Biological Systems, J. Phys.: Condens. Matter., 2007, vol. 19, no. 37, p. 373101.

    Article  CAS  Google Scholar 

  • King, HeidenT.C., Dengler, E., Gao, W.J., et al., Developmental Toxicity of Low Generation PAMAM Dendrimers in Zebrafish, Toxicol. Appl. Pharm., 2007, vol. 225, pp. 70–79.

    Article  CAS  Google Scholar 

  • Klaine, S.J., Alvarez, P.J., Batley, G.E., et al., Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects, Env. Toxicol. Chem., 2008, vol. 27, no. 9, pp. 1825–1851.

    Article  CAS  Google Scholar 

  • Kolesnichenko, A.V., Timofeev, M.A., and Protopopova, M.V., Toxicity of Nanomaterials: 15 Years of Studies, Ros. Nanotekhnol., 2008, vol. 3, no. 3–4, pp. 54–61.

    Google Scholar 

  • Kreyling, W., Semmler-Behnke, M., and Muller, W., Health Implications of Nanoparticles, J. Nanopart. Res., 2006, vol. 8, no. 5, pp. 543–562.

    Article  CAS  Google Scholar 

  • Krysanov, E.Yu., Demidova, T.B., Pel’gunova, L.A., et al., Effect of nanoparticles of Hydrated Stannun Dioxide (SnO2 × H2O) on Guppi (Poecilia reticulata Peters, 1860), Dokl. Akad. Nauk, 2009, vol. 426, no. 6, pp. 844–846.

    Google Scholar 

  • Lam, C.W., James, J.T., McCluskey, R., et al., A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks, Crit. Rev. Toxicol., 2006, vol. 36, no. 3, pp. 189–217.

    Article  PubMed  CAS  Google Scholar 

  • Larson, D.R., Zipfel, W.R., Williams, R.M., et al., Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo, Science, 2003, vol. 300, pp. 1434–1436.

    Article  PubMed  Google Scholar 

  • Lecoanet, H.F. and Wiesner, M.R., Velocity Effects on Fullerene and Oxide Nanoparticle Deposition in Porous Media, Environ. Sci. Technol., 2004, vol. 38, no. 16, pp. 4377–4382.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.J., Nallathamby, P.D., Browning, L.M., et al., In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos, ACS Nano, 2007, vol. 1, no. 2, pp. 133–143.

    Article  PubMed  CAS  Google Scholar 

  • Lovern, S.B. and Klaper, R., Daphnia Magna Mortality When Exposed to Titanium Dioxide and Fullerene (C60) Nanoparticles, Env. Toxicol. Chem., 2006, vol. 25, no. 4, pp. 1132–1137.

    Article  CAS  Google Scholar 

  • Lovern, S.B., Strickler, J.R., and Klaper, R., Behavioral and Physiological Changes in Daphnia Magna When Exposed to Nanoparticle Suspensions (Titanium Dioxide, Nano-C60, and C60HxC70Hx), Environ. Sci. Technol., 2007, vol. 41, no. 12, pp. 4465–4470.

    Article  PubMed  CAS  Google Scholar 

  • Luo, J., Toxicity and Bioaccumulation of Nanomaterial in Aquatic Species, J. U.S. SJWP, 2007, vol. 2, pp. 1–16.

    Google Scholar 

  • Maynard, A.D., Baron, P.A., Foley, M., et al., Exposure to Carbon Nanotube Material: Aerosol Release during the Handling of Unrefined Singlewalled Carbon Nanotube Material, J. Toxicol. Env. Health A, 2004, vol. 67, pp. 87–107.

    Article  CAS  Google Scholar 

  • Maynard, A.D., Nanotechnology: The Next Big Thing, or Much Ado About Nothing?, Ann. Occup. Hyg., 2007, vol. 51, no. 1, pp. 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Moger, J., Johnston, B.D., and Tyler, C.R., Imaging Metal Oxide Nanoparticles in Biological Structures with CARS Microscopy, Optics Express, 2008, vol. 16, no. 5, pp. 3408–3419.

    Article  PubMed  CAS  Google Scholar 

  • Mouchet, F., Landois, P., Flahaut, E., et al., Assessment of the Potential in Vivo Ecotoxicity of Double-Walled Carbon Nanotubes (DWNTs) in Water, Using the Amphibian Ambystoma mexicanum, Nanotoxicology, 2007, vol. 1, no. 2, pp. 149–156.

    Article  CAS  Google Scholar 

  • Mouchet, F., Landois, P., Sarremejeana, E., et al., Characterisation and in Vivo Ecotoxicity Evaluation of Double-Wall Carbon Nanotubes in Larvae of the Amphibian Xenopus laevis, Aquat. Toxicol., 2008, vol. 87, no. 2, pp. 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Moussa, F., Roux, S., Pressac, M., et al., In Vivo Reaction Between [60] Fullerene and Vitamin A in Mouse Liver, New J. Chem., 1998, pp. 989–992.

  • Oberdorster, E., Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress in the Brain of Juvenile Large-mouth Bass, Env. Health. Perspect., 2004, vol. 112 P, pp. 1058–1062.

    Google Scholar 

  • Oberdorster, E., Zhu, S., Blickley, T.M., et al., Ecotoxicology of Carbon-Based Engineered Nanoparticles: Effects of Fullerene (C60) on Aquatic Organisms, Carbon, 2006, vol. 44, pp. 1112–1120.

    Article  CAS  Google Scholar 

  • Oberdorster, G., Biokinetics and Effects of Nanoparticles, in Nanotechnology—Toxicological Issues and Environmental Safety, Simeonova, P.P., Opopol, N., and Luster, M.I., Eds., 2007, pp. 15–51.

  • Oberdorster, G., Maynard, A., Donaldson, K., et al., Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy, Particle Fibre Toxicol., 2005a, vol. 2, pp. 1–8.

    Article  CAS  Google Scholar 

  • Oberdorster, G., Oberdorster, E., and Oberdorster, J., Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles, Env. Health Perspect., 2005b, vol. 113, no. 7, pp. 823–839.

    Article  CAS  Google Scholar 

  • Panina, L.K., Kurochkin, V.E., Bogomolova, E.V., et al., Biotransformation of Fullerenes, Dokl. Akad. Nauk, 1997, vol. 357, no. 2, pp. 275–277.

    CAS  Google Scholar 

  • Petersen, E.J., Huang, Q., and Weber, W.J., Bioaccumulation of Radio-Labeled Carbon Nanotubes by Eisenia Foetida, Environ. Sci. Technol., 2008a, vol. 42, no. 8, pp. 3090–3095.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, E.J., Huang, Q., and Weber, W.J., Ecological Uptake and Depuration of Carbon Nanotubes by Lumbriculus variegatus, Env. Health Perspect., 2008b, vol. 116, no. 4, pp. 496–500.

    CAS  Google Scholar 

  • Piotrovskii, L.B. and Kiselev, O.I., Fullereny v biologii (Fullerenes in Biology), St. Petersburg: Rostok, 2006.

    Google Scholar 

  • Ramsden, C.S., Smith, T.J., Shaw, B.J., and Handy, R.D., Dietary Exposure to Titanium Dioxide Nanoparticles in Rainbow Trout (Oncorhynchus mykiss): No Effect on Growth, but Subtle Biochemical Disturbances in the Brain, Ecotoxicology, 2009, vol. 18, no. 7, pp. 939–951.

    Article  PubMed  CAS  Google Scholar 

  • Rawson, D.M., Zhang, T., Kalicharan, D., and Jongebloed, W.L., Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy Studies of the Chorion, Plasma Membrane and Syncytial Layers of the Gastrula-Stage Embryo of the Zebrafish Brachydanio rerio: A Consideration of the Structural and Functional Relationships with respect to Cryoprotectant Penetration, Aquacult. Res., 2000, vol. 31, no. 2, pp. 325–336.

    Article  Google Scholar 

  • Roberts, A.P., Mount, A.S., Seda, B., et al., In Vivo Biomodification of Lipid-Coated Carbon Nanotubes by Daphnia magna, Environ. Sci. Technol., 2007, vol. 41, no. 8, pp. 3025–3029.

    Article  PubMed  CAS  Google Scholar 

  • Scown, T.M., van Aerle, R., Johnston, B.D., et al., High Doses of Intravenously Administered Titanium Dioxide Nanoparticles Accumulate in the Kidneys of Rainbow Trout but with No Observable Impairment of Renal Function, Toxicol. Sci., 2009, vol. 109, no. 2, pp. 372–380.

    Article  PubMed  CAS  Google Scholar 

  • Service, R.F., Calls Rise for More Research on Toxicology of Nanomaterials, Science, 2005, no. 5754, p. 1609.

  • Smith, C.J., Shawa, B.J., and Handy, R.D., Toxicity of Single Walled Carbon Nanotubes to Rainbow Trout (Oncorhynchus mykiss): Respiratory Toxicity, Organ Pathologies, and Other Physiological Effects, Aquat. Toxicol., 2007, vol. 82, no. 2, pp. 94–109.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H., Zhang, X., Niu, Q., et al., Enhanced Accumulation of Arsenate in Carp in the Presence of Titanium Dioxide Nanoparticles, Water Air Soil Pollut., 2007, vol. 178 P, pp. 245–254.

    Article  CAS  Google Scholar 

  • Templeton, R.C., Ferguson, P.L., Washburn, K.M., et al., Life-Cycle Effects of Single-Walled Carbon Nanotubes (SWNTs) on an Estuarine Meiobenthic Copepod, Environ. Sci. Technol., 2006, vol. 40, no. 23, pp. 7387–7393.

    Article  PubMed  CAS  Google Scholar 

  • Terashima, M. and Nagao, S., Solubilization of [60]Fullerene in Water by Aquatic Humic Substances, Chem. Lett., 2007, vol. 36, no. 2, pp. 302–303.

    Article  CAS  Google Scholar 

  • Tret’yakov, Yu.D., Problem of Development of Nanotechnologies in Russia and Abroad, Vestn. Ross. Akad. Nauk, 2007, vol. 77, no. 1, pp. 3–10.

    Google Scholar 

  • Usenko, C.Y., Harper, S.L., and Tanguay, R.L., Fullerene C60 Exposure Elicits An Oxidative Stress Response in Embryonic Zebrafish, Toxicol. Appl. Pharmacol., 2008, vol. 229, no. 1, pp. 44–55.

    Article  PubMed  CAS  Google Scholar 

  • Usenko, C.Y., Harper, S.L., and Tanguay, R.L., In Vivo Evaluation of Carbon Fullerene Toxicity using Embryonic Zebrafish, Carbon, 2007, vol. 45, no. 9, pp. 1891–1898.

    Article  PubMed  CAS  Google Scholar 

  • Velzeboer, I., Hendriks, A.J., Ragas, A.M., and van de Meent, D., Aquatic Ecotoxicity Tests of Some Nanomaterials, Env. Toxicol. Chem., 2008, vol. 27, no. 9, pp. 1942–1947.

    Article  CAS  Google Scholar 

  • Warheit, D.B., Hoke, R.A., Finlay, C., et al., Development of a Base Set of Toxicity Tests using Ultrafine TiO2 Particles as a Component of Nanoparticle Risk Management, Toxicol. Lett, 2007, vol. 171, no. 3, pp. 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Sun, H., Zhang, Z., et al., Enhanced Bioaccumulation of Cadmium in Carp in the Presence of Titanium Dioxide Nanoparticles, Chemosphere, 2007, vol. 67, no. 1, pp. 160–166.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, S., Oberdorster, E., and Haasch, M.L., Toxicity of An Engineered Nanoparticle (Fullerene, C60) in Two Aquatic Species, Daphnia and Fathead Minnow, Marine Environ. Res., 2006, vol. 62 P, pp. 5–S9.

    Article  CAS  Google Scholar 

  • Zhu, X., Chang, Y., and Chen, Y., Toxicity and Bioaccumulation of TiO2 Nanoparticle Aggregates in Daphnia magna, Chemosphere, 2010, vol. 78, no. 3, pp. 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X., Zhu, L., Chen, Y., and Tian, S., Acute Toxicities of Six Manufactured Nanomaterial Suspensions to Daphnia Magna, J. Nanopart. Res., 2009, vol. 11 P, pp. 67–75.

    Article  CAS  Google Scholar 

  • Zhu, X., Zhu, L., Duan, Z., et al., Comparative Toxicity of Several Metal Oxide Nanoparticle Aqueous Suspensions to Zebrafish (Danio rerio) Early Developmental Stage, J. Env. Sci. Health, 2008, vol. 43, no. 3, pp. 278–284.

    Article  CAS  Google Scholar 

  • Zhu, X., Zhu, L., Li, Y., et al., Developmental Toxicity in Zebrafish (Danio rerio) Embryos after Exposure to Manufactured Nanomaterials Buckminsterfullerene Aggregates (NC60) and Fullerol, Env. Toxicol. Chem., 2007, vol. 26, no. 5, pp. 976–979.

    Article  CAS  Google Scholar 

  • Zhu, Y., Ran, T., Li, Y., et al., Dependence of the Cytotoxicity of Multi-Walled Carbon Nanotubes on the Culture Medium, Nanotecnology, 2006a, vol. 17 P, pp. 4668–4674.

    Article  CAS  Google Scholar 

  • Zhu, Y., Zhao, Q., Li, Y., et al., The Interaction and Toxicity of Multi-Walled Carbon Nanotubes with Stylonychia Mytilus, J. Nanosci. Nanotechnol., 2006b, no. 6, pp. 1357–1364.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Krysanov.

Additional information

Original Russian Text © E.Yu. Krysanov, D.S. Pavlov, T.B. Demidova, Yu.Yu. Dgebuadze, 2010, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2010, No. 4, pp. 478–485.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krysanov, E.Y., Pavlov, D.S., Demidova, T.B. et al. Effect of nanoparticles on aquatic organisms. Biol Bull Russ Acad Sci 37, 406–412 (2010). https://doi.org/10.1134/S1062359010040114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359010040114

Keywords

Navigation