Advertisement

Biology Bulletin

, Volume 37, Issue 4, pp 346–350 | Cite as

The drug hypoxen: A new inhibitor of mitochondrial respiration and dehydrogenases

  • E. A. Kosenko
  • M. B. Abramova
  • N. I. Venediktova
  • I. I. Popova
  • Yu. G. KaminskiiEmail author
Biochemistry
  • 96 Downloads

Abstract

The effect of hypoxen on the oxygen consumption and activity of dehydrogenases in rat liver mitochondria has been studied. The addition of hypoxen to mitochondria caused a reduction of the rate of phosphorylating and uncoupling respiration. The minimal effective concentration of hypoxen was 15 μg/ml with succinate, 60 μg/ml with pyruvate or palmitoylcarnitine, and 120 μg/ml with glutamate as the substrates. The activities of malate, glutamate, and succinate dehydrogenases in mitochondria were significantly decreased by the effect of hypoxen.

Keywords

Biology Bulletin Mitochondrial Respiration Minimal Effective Concentration Palmitoylcarnitine Succinate Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eropkin, M.Yu., Gudkova, T.M., Konovalova, N.I., et al., Antiviral Effect of Some Antioxidants/Antihypoxants and Their Combination with Remantadin against Human Influenza Virus A(H3N2) Studied in Models in vitro, Eksperim. Klin. Farmakol., 2007, vol. 70, no. 5, pp. 33–37.Google Scholar
  2. Kochetygov, N.I. and Makeev, A.B., Infusion Therapy of Experimental Ozone Shock using Antihypoxant Olifen, Patol. Fiziol. Eksp. Ter., 1992, no. 5–6, pp. 32–34.Google Scholar
  3. Kosenko, E., Felipo, V., Montoliu, C., et al., Effects of Acute Hyperammonemia in vivo on Oxidative Metabolism in Nonsynaptic Rat Brain Mitochondria, Metab. Brain Dis., 1997, vol. 12, pp. 69–82.CrossRefPubMedGoogle Scholar
  4. Kosenko, E.A., Comparative Study of Energy Metabolism in the Liver and Skeletal Muscle of Rat and Rabbit: Effect of Starvation, Biokhimiya, 1981, vol. 46, pp. 1389–1395.Google Scholar
  5. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.PubMedGoogle Scholar
  6. Rasmussen, U.F. and Rasmussen, H.N., Human Quadriceps Muscle Mitochondria: a Functional Characterization, Mol. Cell Biochem., 2000, vol. 208, pp. 37–44.CrossRefPubMedGoogle Scholar
  7. Semigolovskii, N.Yu., Application of Antihypoxants in Acute Myocardial Infarction, Anesteziol. Reanimatol., 1998, no. 2, pp. 56–59.Google Scholar
  8. Smirnov, A.V. and Krivoruchko, B.I., Antihypoxants in Emergency Medicine, Anesteziol. Reanimatol., 1998, no. 2, pp. 50–55.Google Scholar
  9. Smirnov, V.S. and Kuz’mich, M.K., Gipoksen (Hypoxen), St. Petersburg: FARMindeks, 2001.Google Scholar
  10. Tolstoi, A.D., Dzhurko, B.I., Vashetko, R.V., et al., Histoprotective Effect of Antihypoxant Olifen in Experimental Acute Pancreatitis, Byull. Eksp. Biol. Med., 2001, vol. 131, pp. 312–314.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. A. Kosenko
    • 1
  • M. B. Abramova
    • 1
  • N. I. Venediktova
    • 1
  • I. I. Popova
    • 1
  • Yu. G. Kaminskii
    • 1
    Email author
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow regionRussia

Personalised recommendations