Skip to main content
Log in

Stable isotopes of carbon and nitrogen in soil ecological studies

  • Ecology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The development of stable isotope techniques is one of the main methodological advances in ecology of the last decades of the 20th century. Many biogeochemical processes are accompanied by changes in the ratio between stable isotopes of carbon and nitrogen (12C/13C and 14N/15N), which allows different ecosystem components and different ecosystems to be distinguished by their isotopic composition. Analysis of isotopic composition makes it possible to trace matter and energy flows through biological systems and to evaluate the rate of many ecological processes. The main concepts and methods of stable isotope ecology and patterns of stable isotope fractionation during organic matter decomposition are considered with special emphasis on the fractionation of isotopes in food chains and the use of stable isotope studies of trophic relationships between soil animals in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, T.S. and Sterner, R.W., The Effect of Dietary Nitrogen Content on Trophic Level 15N Enrichment, Limnol. Oceanogr., 2000, vol. 45, pp. 601–607.

    Article  CAS  Google Scholar 

  • Ågren G.I., Bosatta E., Balesdent J., Isotope Discrimination during Decomposition of Organic Matter: a Theoretical Analysis, Soil Sci. Soc. Am. J., 1996, vol. 60, pp. 1121–1126.

    Article  Google Scholar 

  • Akamatsu, F., Toda, H., and Okino, T., Food Source of Riparian Spiders Analyzed by Using Stable Isotope Ratios, Ecol. Res., 2004, vol. 19, pp. 655–662.

    Article  Google Scholar 

  • Anderson, J.M., The Enigma of Soil Animal Species Diversity, in Progress in Soil Zoology, Vanek, J., Ed., Prague: Academia, 1975, pp. 51–58.

    Google Scholar 

  • Anderson, W.B. and Polis, G.A., Marine Subsidies of Island Communities in the Gulf of California: Evidence from Stable Carbon and Nitrogen Isotopes, Oikos, 1998, vol. 81, pp. 75–80.

    Article  Google Scholar 

  • Andrews, J.A., Harrison, K.G., Matamala, R., and Schlesinger, W.H., Separation of Root Respiration from Total Soil Respiration Using Carbon-13 Labeling during Free-Air Carbon Dioxide Enrichment (FACE), Soil Sci. Soc. Am. J., 1999, vol. 63, pp. 1429–1435.

    Article  CAS  Google Scholar 

  • Arneson, L.S. and MacAvoy, S.E., Carbon, Nitrogen, and Sulfur Diet-Tissue Discrimination in Mouse Tissues, Can. J. Zool., 2005, vol. 83, pp. 989–995.

    Article  CAS  Google Scholar 

  • Balter, V., Simon, L., Fouillet, H., and Leuyer, C., Box-Modeling of 15N/14N in Mammals, Oecologia, 2006, vol. 147, pp. 212–222.

    Article  PubMed  Google Scholar 

  • Bastow, J.L., Sabo, J.L., Finlay, J.C., and Power, M.E., A Basal Aquatic-Terrestrial Trophic Link in Rivers: Algal Subsidies via Shore-Dwelling Grasshoppers, Oecologia, 2002, vol. 131, pp. 261–268.

    Article  Google Scholar 

  • Birchall, J., O’Connell, T.C., Heaton, T.H.E., and Hedges, R.E.M., Hydrogen Isotope Ratios in Animal Body Protein Reflect Trophic Level, Okeanologiya, 2005, vol. 74, pp. 877–881.

    Google Scholar 

  • Blüthgen, N., Gebauer, G., and Fiedler, K., Disentangling a Rainforest Food Web Using Stable Isotopes: Dietary Diversity in a Species-Rich Ant Community, Oecologia, 2003, vol. 137, pp. 426–435.

    Article  PubMed  Google Scholar 

  • Bonkowski, M., Griffiths, B.S., and Ritz, K., Food Preferences of Earthworms for Soil Fungi, Pedobiologia, 2000, vol. 44, pp. 666–676.

    Article  Google Scholar 

  • Briers, R.A., Cariss, H., Geoghegan, R., and Gee, J.H.R., The Lateral Extent of the Subsidy from an Upland Stream to Riparian Lycosid Spiders, Ecography, 2005, vol. 28, pp. 165–170.

    Article  Google Scholar 

  • Briones, M.J.I. and Bol, R., Natural Abundance of C-13 and N-15 in Earthworms from Different Cropping Treatments, Pedobiologia, 2003, vol. 47, pp. 560–567.

    Google Scholar 

  • Briones, M.J.I., Bol, R., Sleep, D., and Sampedro, L., Isotopic Ecology of Earthworms under Grassland and Arable Cropping Systems, Pedobiologia, 1999a, vol. 43, pp. 675–683.

    Google Scholar 

  • Briones, M.J.I., Ineson, P., and Sleep, D., Use of δ13C to Determine Food Selection in Collembolan Species, Soil Biol. Biochem., 1999b, vol. 31, pp. 937–940.

    Article  CAS  Google Scholar 

  • Briones, M.J.I., Bol, R., Sleep, D., et al., Spatio-Temporal Variation of Stable Isotope Ratios in Earthworms under Grassland and Maize Cropping Systems, Soil Biol. Biochem., 2001, vol. 33, pp. 1673–1682.

    Article  CAS  Google Scholar 

  • Brooks, J.R., Flanagan, L.B., Buchmann, N., and Ehleringer, J.R., Carbon Isotope Composition of Boreal Plants: Functional Grouping of Life Forms, Oecologia, 1997a, vol. 110, pp. 301–311.

    Article  Google Scholar 

  • Brooks, J.R., Flanagan, L.B., Varney, G.T., and Ehleringer, J.R., Vertical Gradients in Photosynthetic Gas Exchange Characteristics and Refixation of Respired CO2 within Boreal Forest Canopies, Tree Physiol., 1997b, vol. 17, pp. 1–12.

    PubMed  Google Scholar 

  • Buchmann, N., Kao, W., and Ehleringer, J.R., Influence of Stand Structure on Carbon-13 of Vegetation, Soils, and Canopy Air within Deciduous and Evergreen Forests of Utah (USA), Oecologia, 1997, vol. 110, pp. 109–119.

    Article  Google Scholar 

  • Buchmann, N., Brooks, J.R., Flanagan, L.B., and Ehleringer, J.R., Carbon Isotope Discrimination of Terrestrial Ecosystems, in Stable isotopes—Integration of Biological, Ecological and Geochemical Processes, Griffiths, H., Ed., Oxford: BIOS Sci., 1998, pp. 203–221.

    Google Scholar 

  • Burkins, M.B., Virginia, R.A., Chamberlain, C.P., and Wall, D.H., Origin and Distribution of Soil Organic Matter in Taylor Valley, Antarctica, Ecology, 2000, vol. 81, pp. 2377–2391.

    Google Scholar 

  • Caner, L., Zeller, B., Dambrine, E., et al., Origin of the Nitrogen Assimilated by Soil Fauna Living in Decomposing Beech Litter, Soil Biol. Biochem., 2004, vol. 36, pp. 1861–1872.

    Article  CAS  Google Scholar 

  • Chahartaghi, M., Langel, R., Scheu, S., and Ruess, L., Feeding Guilds in Collembola Based on Nitrogen Stable Isotope Ratios, Soil Biol. Biochem., 2005, vol. 37, pp. 1718–1725.

    Article  CAS  Google Scholar 

  • Chamberlain, P.M., Bull, I.D., Black, H.I.J., et al., Lipid Content and Carbon Assimilation in Collembola: Implications for the Use of Compound-Specific Carbon Isotope Analysis in Animal Dietary Studies, Oecologia, 2004, vol. 139, pp. 325–335.

    Article  PubMed  Google Scholar 

  • Cheng, W., Measurement of Rhizosphere Respiration and Organic Matter Decomposition Using Natural 13C, Plant Soil, 1996, vol. 183, pp. 263–268.

    Article  CAS  Google Scholar 

  • Collier, K.J., Bury, S., and Gibbs, M., A Stable Isotope Study of Linkages between Stream and Terrestrial Food Webs Through Spider Predation, Freshwater Biol., 2002, vol. 47, pp. 1651–1659.

    Article  Google Scholar 

  • Connin, S.L., Feng, X., and Virginia, R.A., Isotopic Discrimination during Long-Term Decomposition in an Arid Land Ecosystem, Soil Biol. Biochem., 2001, vol. 33, pp. 41–51.

    Article  CAS  Google Scholar 

  • Dawson, T.E., Mambelli, S., Plamboeck, A.H., et al., Stable Isotopes in Plant Ecology, Annu. Rev. Ecol. Syst., 2002, vol. 33, pp. 507–559.

    Article  Google Scholar 

  • DeNiro, M.J. and Epstein, S., Influence of Diet on the Distribution of Carbon Isotopes in Animals, Geochim. Cosmochim. Acta, 1978, vol. 42, pp. 495–506.

    Article  CAS  Google Scholar 

  • DeNiro, M.J. and Epstein, S., Influence of Diet on the Distribution of Nitrogen Isotopes in Animals, Geochim. Cosmochim. Acta, 1981a, vol. 45, pp. 341–351.

    Article  CAS  Google Scholar 

  • DeNiro, M.J. and Epstein, S., Hydrogen Isotope Ratios of Mouse Tissues Are Influenced by a Variety of Factors Other Than Diet, Science, 1981b, vol. 214, pp. 1374–1375.

    Article  PubMed  CAS  Google Scholar 

  • Diels, J., Vanlauwe, B., van der Meersch, M.K., et al., Long-Term Soil Organic Carbon Dynamics in a Subhumid Tropical Climate: 13C Data in Mixed C3/C4 Cropping and Modeling with ROTHC, Soil Biol. Biochem., 2004, vol. 36, pp. 1739–1750.

    Article  CAS  Google Scholar 

  • Dyckmans, J., Scrimgeour, C.M., and Schmidt, O., A Simple and Rapid Method for Labelling Earthworms with 15N and 13C, Soil Biol. Biochem., 2005, vol. 37, pp. 989–993.

    Article  CAS  Google Scholar 

  • Edwards, M.S., Turner, T.F., and Sharp, Z.D., Short-and Long-Term Effects of Fixation and Preservation on Stable Isotope Values (δ13C, δ15N, δ34S) of Fluid-Preserved Museum Specimens, Copeia, 2002, vol. 4, pp. 1106–1112.

    Article  Google Scholar 

  • Eggleton, P. and Tayasu, I., Feeding Groups, Lifetypes and the Global Ecology of Termites, Ecol. Res., 2001, vol. 16, pp. 941–960.

    Article  Google Scholar 

  • Ehleringer, J.R., Buchmann, N., and Flanagan, L.B., Carbon Isotope Ratios in Belowground Carbon Cycle Processes, Ecol. Appl, 2000, vol. 10, pp. 412–422.

    Article  Google Scholar 

  • Ehleringer, J.R., Cerling, T.E., and Flanagan, L.B., Global Changes and the Linkages between Physiological Ecology and Ecosystem Ecology, in Ecology: Achievement and Challenge, Press, M.C., Huntly, N.J., and Levin, S., Eds., Oxford: Blackwell, 2001, pp. 115–138.

    Google Scholar 

  • Ekblad, A. and Högberg, P., Natural Abundance of 13C in CO2 Respired from Forest Soils Reveals Speed of Link between Tree Photosynthesis and Root Respiration, Oecologia, 2001, vol. 127, pp. 305–308.

    Article  Google Scholar 

  • Ekblad, A., Nyberg, G., and Högberg, P., 13C-Discrimination during Microbial Respiration of Added C3 , C4 and 13C-Labelled Sugars to a C3-Forest Soil, Oecologia, 2002, vol. 131, pp. 245–249.

    Article  Google Scholar 

  • Ekblad, A., Böstrom, B., Holm, A., and Comstedt, D., Forest Soil Respiration Rate and 13C Is Regulated by Recent above Ground Weather Conditions, Oecologia, 2005, vol. 143, pp. 136–142.

    Article  PubMed  Google Scholar 

  • Evans, C.J., Evershed, R.P., Black, H.I.J., and Ineson, P., Compound-Specific Stable Isotope Analysis of Soil Mesofauna Using Thermally Assisted Hydrolysis and Methylation for Ecological Investigations, Anal. Chem., 2003, vol. 75, pp. 6056–6062.

    Article  PubMed  CAS  Google Scholar 

  • Fábián, M., The Effects of Different Methods of Preservation on the 15N Concentration in Folsomia candida (Collembola), Appl. Soil. Ecol., 1998, vol. 9, pp. 101–104.

    Article  Google Scholar 

  • Feng, X.H., A Theoretical Analysis of Carbon Isotope Evolution of Decomposing Plant Litters and Soil Organic Matter, Glob. Biogeochem. Cycles, 2002, vol. 16, art. no. 1119.

  • Fernandez, I., Mahieu, N., and Cadisch, G., Carbon Isotopic Fractionation during Decomposition of Plant Materials of Different Quality, Glob. Biogeochem. Cycles, 2003, vol. 17, art. no. 1075.

  • France, R.L., δ15N Examination of the Lindeman-Hutchinson-Peters Theory of Increasing Omnivory with Trophic Height in Aquatic Foodwebs, Res. Popul. Ecol., 1997, vol. 39, pp. 121–125.

    Google Scholar 

  • Fry, B., Steady State Models of Stable Isotopic Distributions, Isotopes Environ. Health Stud., 2003, vol. 39, pp. 219–232.

    Article  PubMed  CAS  Google Scholar 

  • Fry, B., Stable Isotope Ecology, Berlin-Heidelberg: Springer, 2006.

    Google Scholar 

  • Gannes, L.Z. and O’Brien, D.M., and Martinez del Rio, C., Stable Isotopes in Animal Ecology: Assumptions, Caveats, and a Call for More Laboratory Experiments, Ecology, 1997, vol. 78, pp. 1271–1276.

    Article  Google Scholar 

  • Garten, C.T., Cooper, L.W., Post, W.M., and Hanson, P.J., Climate Controls on Forest Soil C Isotope Ratios in the Southern Appalachian Mountains, Ecology, 2000, vol. 81, pp. 1108–1119.

    Google Scholar 

  • Ghilarov, M.S., Why So Many Species and So Many Individuals Can Coexist in the Soil, Ecol. Bull., 1977, vol. 25, pp. 593–597.

    Google Scholar 

  • Gratton, C. and Forbes, A.E., Changes in δ13C Stable Isotopes in Multiple Tissues of Insect Predators Fed Isotopically Distinct Prey, Oecologia, 2006, vol. 147, pp. 615–624.

    Article  PubMed  Google Scholar 

  • Gunn, A. and Cherrett, J.M., The Exploitation of Food Resources by Soil Meso-and Macro Invertebrates, Pedobiologia, 1993, vol. 37, pp. 303–327.

    Google Scholar 

  • Halaj, J., Peck, R.W., and Niwa, C.G., Trophic Structure of a Macroarthropod Litter Food Web in Managed Coniferous Forest Stands: A Stable Isotope Analysis with δ15N and δ13C, Pedobiologia, 2005, vol. 2, pp. 109–118.

    Article  CAS  Google Scholar 

  • Handley, L.L. and Scrimgeour, C.M., Terrestrial Plant Ecology and 15N Natural Abundance: The Present Limits to Interpretation for Uncultivated Systems with Original Data from a Scottish Old Field, Adv. Ecol. Res., 1997, vol. 27, pp. 133–212.

    Article  Google Scholar 

  • Handley, L.L., Austin, A.T., Robinson, D., et al., The 15N Natural Abundance (δ15N) of Ecosystem Samples Reflects Measures of Water Availability, Aust. J. Plant Physiol., 1999, vol. 26, pp. 185–199.

    Google Scholar 

  • Hart, E.A. and Lovvorn, J.R., Interpreting Stable Isotopes from Macroinvertebrate Foodwebs in Saline Wetlands, Limnol. Oceanogr., 2002, vol. 47, pp. 580–584.

    Article  CAS  Google Scholar 

  • Haubert, D., Langel, R., Scheu, S., and Ruess, L., Effects of Food Quality, Starvation and Life Stage on Stable Isotope Fractionation in Collembola, Pedobiologia, 2005, vol. 49, pp. 229–237.

    Article  CAS  Google Scholar 

  • Helfield, J.M. and Naiman, R.J., Salmon and Alder as Nitrogen Sources to Riparian Forests in a Boreal Alaskan Watershed, Oecologia, 2002, vol. 133, pp. 573–582.

    Article  Google Scholar 

  • Hendrix, P.F., Callaham, M.A., Lachnicht, S.L., et al., Stable Isotopic Studies of Resource Utilization by Nearctic Earthworms (Diplocardia, Oligochaeta) in Subtropical Savanna and Forest Ecosystems, Pedobiologia, 1999, vol. 43, pp. 818–823.

    Google Scholar 

  • Hobson, K.A., Atwell, L., and Wassenaar, L.I., Influence of Drinking Water and Diet on the Stable-Hydrogen Isotope Ratios of Animal Tissues, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 8003–8006.

    Article  PubMed  CAS  Google Scholar 

  • Högberg, P., 15N Natural Abundance in Soil-Plant Systems, New Phytol., 1997, vol. 137, pp. 179–203.

    Article  Google Scholar 

  • Högberg, P., Plamboeck, A.H., Taylor, A.F.S., and Fransson, P.M.A., Natural 13C Abundance Reveals Trophic Status of Fungi and Host-Origin of Carbon in Mycorrhizal Fungi in Mixed Forests, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 8534–8539.

    Article  PubMed  Google Scholar 

  • Illig, J., Langel, R., Norton, R.A., et al., Where Are the Decomposers Uncovering the Soil Food Web of a Tropical Montane Rain Forest in Southern Ecuador Using Stable Isotopes (15N), J. Trop. Ecol., 2005, vol. 21, pp. 589–593.

    Article  Google Scholar 

  • Jørgensen, H.B., Elmholt, S., and Petersen, H., Collembolan Dietary Specialisation on Soil Grown Fungi, Biol. Fertil. Soils, 2003, vol. 39, pp. 9–15.

    Article  Google Scholar 

  • Kling, G.W., Fry, B., and O’Brien, W.J., Stable Isotopes and Planktonic Trophic Structure in Arctic Lakes, Ecology, 1992, vol. 73, pp. 561–566.

    Article  Google Scholar 

  • Langellotto, G.A., Rosenheim, J.A., and Williams, M.R., Enhanced Carbon Enrichment in Parasitoids (Hymenoptera): A Stable Isotope Study, Ann. Entomol. Soc. Am., 2005, vol. 98, pp. 205–213.

    Article  Google Scholar 

  • Lubetkin, S.C. and Simenstad, C.A., Multi-Source Mixing Models to Quantify Food Web Sources and Pathways, J. Appl. Ecol., 2004, vol. 41, pp. 996–1008.

    Article  Google Scholar 

  • Lueders, T., Wagner, B., Claus, P., and Friedrich, M.W., Stable Isotope Probing of rRNA and DNA Reveals a Dynamic Methylotroph Community and Trophic Interactions with Fungi and Protozoa in Oxic Rice Field Soil, Environ. Microbiol., 2004, vol. 6, pp. 60–72.

    Article  PubMed  CAS  Google Scholar 

  • Macko, S.A., Estep, M.L.F., Engel, M.H., and Hare, P.E., Kinetic Fractionation of Stable Nitrogen Isotopes during Amino-Acid Transamination, Geochim. Cosmochim. Acta, 1986, vol. 50, pp. 2143–2146.

    Article  CAS  Google Scholar 

  • Macko, S.A., Estep, M.L.F., and Lee, W.Y., Stable Hydrogen Isotope Analysis of Foodwebs on Laboratory and Field Populations of Marine Amphipods, J. Exp. Mar. Biol. Ecol., 1983, vol. 72, pp. 243–249.

    Article  CAS  Google Scholar 

  • Maraun, M., Martens, H., Migge, S., et al., Adding to “the Enigma of Soil Animal Diversity”: Fungal Feeders and Saprophagous Soil Invertebrates Prefer Similar Food Substrates, Eur. J. Soil Biol., 2003, vol. 39, pp. 85–95.

    Article  Google Scholar 

  • Martin, A., Mariotti, A., Balesdent, J., et al., Estimate of Organic Matter Turnover Rate in a Savanna Soil by 13C Natural Abundance Measurements, Soil Biol. Biochem., 1990, vol. 22, pp. 517–523.

    Article  Google Scholar 

  • Martin, A., Balesdent, J., and Mariotti, A., Earthworm Diet Related to Soil Organic Matter Dynamics through 13C Measurements, Oecologia, 1992, vol. 91, pp. 23–29.

    Google Scholar 

  • Martinelli, L.A., Piccolo, M.A., Townsend, A.R., et al., Nitrogen Stable Isotopic Composition of Leaves and Soil: Tropical Versus Temperate Forests, Biogeochemistry, 1999, vol. 46, pp. 45–65.

    CAS  Google Scholar 

  • Mateu-Andrés, I., A Revised List of the European C4 Plants, Photosynthetica, 1992, vol. 26, pp. 323–331.

    Google Scholar 

  • Matthews, B. and Mazumder, A., A Critical Evaluation of Intrapopulation Variation of δ13C and Isotopic Evidence of Individual Specialization, Oecologia, 2004, vol. 140, pp. 361–371.

    Article  PubMed  Google Scholar 

  • McCutchan, J.H., Lewis, W.M., Kendall, C., and McGrath, C.C., Variation in Trophic Shift for Stable Isotope Ratios of Carbon, Nitrogen, and Sulfur, Oikos, 2003, vol. 102, pp. 378–390.

    Article  CAS  Google Scholar 

  • McNabb, D.M., Halaj, J., and Wise, D.H., Inferring Trophic Positions of Generalist Predators and Their Linkage to the Detrital Food Web in Agroecosystems: A Stable Isotope Analysis, Pedobiologia, 2001, vol. 45, pp. 289–297.

    Article  Google Scholar 

  • Melillo, J.M., Aber, J.D., Linkins, A.E., Ricca, A., et al., Carbon and Nitrogen Dynamics along the Decay Continuum: Plant Litter to Soil Organic Matter, Plant Soil, 1989, vol. 115, pp. 189–198.

    Article  Google Scholar 

  • Michelsen, A., Quarmby, C., Sleep, D., and Jonasson, S., Vasicular Plant 15N Natural Abundance in Heath and Forest Tundra Ecosystems Is Closely Correlated with Presence and Type of Mycorrhizal Fungi in Roots, Oecologia, 1998, vol. 115, pp. 406–418.

    Article  Google Scholar 

  • Michener, R.H. and Schell, D.M., in Stable Isotopes in Ecology and Environmental Science, Lajtha, K. and Michener, R.H., Eds., Oxford: Blackwell, 1994, pp. 138–157.

    Google Scholar 

  • Minagawa, M. and Wada, E., Stepwise Enrichment of 15N along Food Chains: Further Evidence and the Relation between δ15N and Animal Age, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 1135–1140.

    Article  CAS  Google Scholar 

  • Miyake, Y. and Wada, E., The Abundance Ratio of 15N/14N in Marine Environments, Rec. Oceanogr. Works Jpn. 1967, vol. 9, pp. 37–53.

    Google Scholar 

  • Mooney, K.A. and Tillberg, C.V., Temporal and Spatial Variation to Ant Omnivory in Pine Forests, Ecology, 2005, vol. 86, pp. 1225–1235.

    Article  Google Scholar 

  • Moore, J.C., Berlow, E.L., Coleman, D.C., et al., Detritus, Trophic Dynamics and Biodiversity, Ecol. Lett. 2004, vol. 7, pp. 584–600.

    Article  Google Scholar 

  • Murphy, D.V., Bhogal, A., Shepherd, M., et al., Comparison of 15N Labelling Methods to Measure Gross Nitrogen Mineralization, Soil Biol. Biochem., 1999, vol. 31, pp. 2015–2024.

    Article  CAS  Google Scholar 

  • Nadelhoffer, K.J. and Fry, B., in Stable Isotopes in Ecology and Environmental Science, Lajtha, K. and Michener, R.H., Eds., Oxford: Blackwell, 1994, pp. 22–44.

    Google Scholar 

  • Nakano, A., Takahashi, K., and Kimura, M., The Carbon Origin of Arbuscular Mycorrhizal Fungi Estimated from δ13C Values of Individual Spores, Mycorrhiza, 1999, vol. 9, pp. 41–47.

    Article  CAS  Google Scholar 

  • Neilson, R., Hamilton, D., Wishart, J., et al., Stable Isotope Natural Abundances of Soil, Plants and Soil Invertebrates in an Upland Pasture, Soil Biol. Biochem., 1998, vol. 30, pp. 1773–1782.

    Article  CAS  Google Scholar 

  • Neilson, R., Boag, B., and Smith, M., Earthworm δ13C and δ15N Analyses Suggest That Putative Functional Classifications of Earthworms Are Site-Specific and May Also Indicate Habitat Diversity, Soil Biol. Biochem., 2000, vol. 32, pp. 1053–1061.

    Article  CAS  Google Scholar 

  • Neilson, R., Robinson, D., Marriott, C.A., et al., Above-Ground Grazing Affects Floristic Composition and Modifies Soil Trophic Interactions, Soil Biol. Biochem., 2002, vol. 34, pp. 1507–1512.

    Article  CAS  Google Scholar 

  • Novák, M., Bottrell, S.H., and Prechova, E., Sulfur Isotope Inventories of Atmospheric Deposition, Spruce Forest Floor and Living Sphagnum along a NW-SE Transect across Europe, Biogeochemistry, 2001, vol. 53, pp. 23–50.

    Article  Google Scholar 

  • Oelbermann, K. and Scheu, S., Stable Isotope Enrichment (δ15N and δ13C) in a Generalist Predator (Pardosa lugubris, Araneae: Lycosidae): Effects of Prey Quality, Oecologia, 2002, vol. 130, pp. 337–344.

    Article  Google Scholar 

  • Olive, P.J.W., Pinnegar, J.K., Polunin, N.V.C., et al., Isotope Trophic-Step Fractionation: a Dynamic Equilibrium Model, Okeanologiya, 2003, vol. 72, pp. 608–617.

    Google Scholar 

  • Olsson, P.A. and Johnson, N.C., Tracking Carbon from the Atmosphere to the Rhizosphere, Ecol. Lett., 2005, vol. 8, pp. 1264–1270.

    Article  Google Scholar 

  • Paetzold, A. and Tockner, K., Effects of Riparian Arthropod Predation on the Biomass and Abundance of Aquatic Insect Emergence, J. N. Am. Benthol. Soc., 2005, vol. 24, pp. 395–402.

    Article  Google Scholar 

  • Paetzold, A., Schubert, C.J., and Tockner, K., Aquatic Terrestrial Linkages along a Braided-River: Riparian Arthropods Feeding on Aquatic Insects, Ecosystems, 2005, vol. 8, pp. 748–759.

    Article  Google Scholar 

  • Patt, J.M., Wainright, S.C., Hamilton, G.C., et al., Assimilation of Carbon and Nitrogen from Pollen and Nectar by a Predaceous Larva and Its Effects on Growth and Development, Ecol. Entomol., 2003, vol. 28, pp. 717–728.

    Article  Google Scholar 

  • Peterson, B.J. and Fry, B., Stable Isotopes in Ecosystem Studies, Annu. Rev. Ecol. Syst., 1987, vol. 18, pp. 293–320.

    Article  Google Scholar 

  • Peterson, B.J., Howarth, R.W., and Garritt, R.H., Multiple Stable Isotopes Used to Trace the Flow of Organic Matter in Estuarine Food Webs, Science, 1985, vol. 227, pp. 1361–1363.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, D.L. and Eldridge, P.M., Estimating the Timing of Diet Shifts Using Stable Isotopes, Oecologia, 2006, vol. 147, pp. 195–203.

    Article  PubMed  Google Scholar 

  • Phillips, D.L. and Gregg, J.W., Uncertainty in Source Partitioning Using Stable Isotopes, Oecologia, 2001, vol. 127, pp. 171–179.

    Article  Google Scholar 

  • Phillips, D.L. and Gregg, J.W., Source Partitioning Using Stable Isotopes: Coping with Too Many Sources, Oecologia, 2003, vol. 136, pp. 261–269.

    Article  PubMed  Google Scholar 

  • Phillips, D.L. and Koch, P.L., Incorporating Concentration Dependence in Stable Isotope Mixing Models, Oecologia, 2002, vol. 130, pp. 114–125.

    Google Scholar 

  • Phillips, D.L., Mixing Models in Analyses of Diet Using Multiple Stable Isotopes: A Critique, Oecologia, 2001, vol. 127, pp. 166–170.

    Article  Google Scholar 

  • Phillips, D.L., Newsome, S.D., and Gregg, J.W., Combining Sources in Stable Isotope Mixing Models: Alternative Methods, Oecologia, 2005, vol. 144, pp. 520–527.

    Article  PubMed  Google Scholar 

  • Ponsard, S. and Amlou, M., Effects of Several Preservation Methods on the Isotopic Content of Drosophila Samples, C. R. Acad. Sci. Ser. III, 1999, vol. 322, pp. 35–41.

    PubMed  CAS  Google Scholar 

  • Ponsard, S. and Arditi, R., What Can Stable Isotopes (δ15N and δ13C) Tell about the Food Web of Soil Macro-Invertebrates, Ecology, 2000, vol. 81, pp. 852–864.

    Google Scholar 

  • Ponsard, S. and Arditi, R., Detecting Omnivory with δ15N, Trends Ecol. Evol., 2001, vol. 16, pp. 20–21.

    Article  Google Scholar 

  • Ponsard, S. and Averbuch, P., Should Growing and Adult Animals Fed on the Same Diet Show Different δ15N Values, Rapid Commun. Mass Sp, 1999, vol. 13, pp. 1305–1310.

    Article  CAS  Google Scholar 

  • Post, D.M., Using Stable Isotopes to Estimate Trophic Position: Models, Methods, and Assumptions, Ecology, 2002, vol. 83, pp. 703–718.

    Google Scholar 

  • Post, D.M., Pace, M.L., and Hairston, N.G., Ecosystem Size Determines Food-Chain Length in Lakes, Nature, 2000, vol. 405, pp. 1047–1049.

    Article  PubMed  CAS  Google Scholar 

  • Power, M.E. and Rainey, W.E., Food Webs and Resource Sheds: towards Spatially Delimiting Trophic Interactions in The ecological consequences of environmental heterogeneity, Hutchings, M.J., John, E.A., and Stewart, A.J.A., Eds., Oxford: Blackwell, 2000, pp. 291–314.

    Google Scholar 

  • Robbins, C.T., Felicetti, L.A., and Sponheimer, M., The Effect of Dietary Protein Quality on Nitrogen Isotope Discrimination in Mammals and Birds, Oecologia, 2005, vol. 144, pp. 534–540.

    Article  PubMed  Google Scholar 

  • Robinson, D., δ15N as an Integrator of the Nitrogen Cycle, Trends Ecol. Evol., 2001, vol. 16, pp. 153–162.

    Article  PubMed  Google Scholar 

  • Rothe, J. and Gleixner, G., Do Stable Isotopes Reflect the Food Web Development in Regenerating Ecosystems, Isotopes Environ. Health Stud, 2000, vol. 36, pp. 285–301.

    Article  PubMed  CAS  Google Scholar 

  • Ruess, L., Häggblom, M.M., Langel, R., and Scheu, S., Nitrogen Isotope Ratios and Fatty Acid Composition as Indicators of Animal Diets in Belowground Systems, Oecologia, 2004, vol. 139, pp. 336–346.

    Article  PubMed  Google Scholar 

  • Ruess, L., Tiunov, A.V., Haubert, D., et al., Carbon Stable Isotope Fractionation and Trophic Transfer of Fatty Acids in Fungal Based Soil Food Chains, Soil Biol. Biochem., 2005, vol. 37, pp. 945–953.

    Article  CAS  Google Scholar 

  • Russow, R., Veste, M., and Littmann, T., Using the Natural 15N Abundance to Assess the Main Nitrogen Inputs Into the Sand Dune Area of the North-Western Negev Desert (Israel), Isotopes Environ. Health Stud, 2004, vol. 40, pp. 57–67.

    Article  PubMed  CAS  Google Scholar 

  • Santrucková, H., Bird, M.I., and Lloyd, J., Microbial Processes and Carbon-Isotope Fractionation in Tropical and Temperate Grassland Soils, Funct. Ecol., 2000, vol. 14, pp. 108–114.

    Article  Google Scholar 

  • Sanzone, D.M., Meyer, J.L., Marti, E., et al., Carbon and Nitrogen Transfer from a Desert Stream to Riparian Predators, Oecologia, 2003, vol. 134, pp. 238–250.

    PubMed  CAS  Google Scholar 

  • Sarakinos, H.C., Johnson, M.L., and Vander Zanden, M.J., A Synthesis of Tissue-Preservation Effects on Carbon and Nitrogen Stable Isotope Signatures, Can. J. Zool., 2002, vol. 80, pp. 381–387.

    Article  Google Scholar 

  • Scheu, S., The Soil Food Web: Structure and Perspectives, Eur. J. Soil Biol., 2002, vol. 38, pp. 147–156.

    Article  Google Scholar 

  • Scheu, S. and Falca, M., The Soil Food Web of Two Beech Forests (Fagus sylvatica) of Contrasting Humus Type: Stable Isotope Analysis of a Macro-and a Mesofauna-Dominated Community, Oecologia, 2000, vol. 123, pp. 285–296.

    Article  Google Scholar 

  • Scheu, S. and Folger, M., Single and Mixed Diets in Collembola: Effects on Reproduction and Stable Isotope Fractionation, Funct. Ecol., 2004, vol. 18, pp. 94–102.

    Article  Google Scholar 

  • Scheu, S. and Setälä, H., Multitrophic Interactions in Decomposer Food Webs, in Multitrophic level interactions, Tscharntke, T. and Hawkins, B.A., Eds., Cambridge: Camb. Univ. Press, 2002, pp. 223–264.

    Google Scholar 

  • Schimmelmann, A. and DeNiro, M.J., Stable Isotopic Studies on Chitin. III. The D/H and 18O/16O Ratios in Arthropod Chitin, Geochim. Cosmochim. Acta, 1986, vol. 50, pp. 1485–1496.

    Article  CAS  Google Scholar 

  • Schmidt, O., Intrapopulation Variation in Carbon and Nitrogen Stable Isotope Ratios in the Earthworm Aporrectodea longa, Ecol. Res., 1999, vol. 14, pp. 317–328.

    Article  Google Scholar 

  • Schmidt, H.L. and Gleixner, G., in Stable isotopes—Integration of Biological, Ecological and Geochemical Processes, Griffiths, H., Ed., Oxford: BIOS Sci., 1998, pp. 13–25.

    Google Scholar 

  • Schmidt, O. and Scrimgeour, C.M., A Simple Urea Leaf-Feeding Method for the Production of 13C and 15N Labelled Plant Material, Plant Soil, 2001, vol. 229, pp. 197–202.

    Article  CAS  Google Scholar 

  • Schmidt, O., Scrimgeour, C.M., and Handley, L.L., Natural Abundance of 15N and 13C in Earthworms from a Wheat and a Wheat-Clover Field, Soil Biol. Biochem., 1997, vol. 29, pp. 1301–1308.

    Article  CAS  Google Scholar 

  • Schmidt, O., Scrimgeour, C.M., and Curry, J.P., Carbon and Nitrogen Stable Isotope Ratios in Body Tissue and Mucus of Feeding and Fasting Earthworms (Lumbricus festivus), Oecologia, 1999, vol. 118, pp. 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, O., Curry, J.P., Dyckmans, J., et al., Dual Stable Isotope Analysis (δ13C and δ15N) of Soil Invertebrates and Their Food Sources, Pedobiologia, 2004, vol. 48, pp. 171–180.

    Article  Google Scholar 

  • Schneider, K. and Maraun, M., Feeding Preferences among Dark Pigmented Fungal Taxa (“Dematiacea”) Indicate Limited Trophic Niche Differentiation of Oribatid Mites (Oribatida, Acari), Pedobiologia, 2005, vol. 49, pp. 61–67.

    Article  Google Scholar 

  • Schneider, K., Migge, S., Norton, R.A., et al., Trophic Niche Differentiation in Soil Microarthropods (Oribatida, Acari): Evidence from Stable Isotope Ratios (15N/14N), Soil Biol. Biochem., 2004, vol. 36, pp. 1769–1774.

    Article  CAS  Google Scholar 

  • Scrimgeour, C.M. and Robinson, D., Stable Isotope Analyses and Applications, in Soil and Environmental analysis: modern instrumental techniques, Smith, K.A. and Cresser, M.S., Eds., New York: Marcel Dekker, 2003, pp. 381–432.

    Google Scholar 

  • Scrimgeour, C.M., Gordon, S.C., Handley, L.L., and Woodford, J.A.T., Trophic Levels and Anomalous δ 15 N of Insects on Raspberry (Rubus idaeus L.), Isotopes Environ. Health Stud., 1995, vol. 31, pp. 107–115.

    CAS  Google Scholar 

  • Seeber, J., Seeber, G.U.H., Kössler, W., et al., Abundance and Trophic Structure of Macro-Decomposers on Alpine Pastureland (Central Alps, Tyrol): Effects of Abandonment of Pasturing, Pedobiologia, 2005, vol. 49, pp. 221–228.

    Article  Google Scholar 

  • Setälä, H. and Aarnio, T., Vertical Stratification and Trophic Interactions among Organisms of a Soil Decomposer Food Web—A Field Experiment Using 15N as a Tool, Eur. J. Soil Biol., 2002, vol. 38, pp. 29–34.

    Article  Google Scholar 

  • Spain, A.V. and Reddell, P., δ13C Values of Selected Termites (Isoptera) and Termite-Modified Materials, Soil Biol. Biochem., 1996, vol. 28, pp. 1585–1593.

    Article  CAS  Google Scholar 

  • Spain, A.V., Saffigna, P.G., and Wood, A.W., Tissue Carbon Source for Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) in a Sugarcane Ecosystem, Soil Biol. Biochem., 1990, vol. 22, pp. 703–706.

    Article  CAS  Google Scholar 

  • Spence, K.O. and Rosenheim, J.A., Isotopic Enrichment in Herbivorous Insects: A Comparative Field-Based Study of Variation, Oecologia, 2005, vol. 146, pp. 89–97.

    Article  PubMed  Google Scholar 

  • Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems, Unkovich, M., Pate, J., McNeill, A., and Gibbs, J.D., Eds., Heidelberg: Springer, 2003.

    Google Scholar 

  • Stable Isotopes—Integration of Biological, Ecological and Geochemical Processes, Griffiths, H., Ed., Oxford: BIOS Sci., 1998.

    Google Scholar 

  • Stable Isotopes in Ecology and Environmental Science, Lajtha, K. and Michener, R.H., Eds., Oxford: Blackwell, 1994.

    Google Scholar 

  • Stiller, M. and Nissenbaum, A., Variations of Stable Hydrogen Isotopes in Plankton from a Freshwater Lake, Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 1099–1101.

    Article  CAS  Google Scholar 

  • Striganova, B.R., Pitanie pochvennykh saprofitov (Nutrition of Soil Saprophytes), Moscow: Nauka, 1980.

    Google Scholar 

  • Sweeting, C.J., Polunin, N.V.C., and Jennings, S., Tissue and Fixative Dependent Shifts of δ13C and δ15N in Preserved Ecological Material, Rapid Commun. Mass Sp., 2004, vol. 18, pp. 2587–2592.

    Article  CAS  Google Scholar 

  • Tayasu, I., Use of Carbon and Nitrogen Isotope Ratios in Termite Research, Ecol. Res., 1998, vol. 13, pp. 377–387.

    Article  Google Scholar 

  • Tayasu, I., Abe, T., Eggleton, P., and Bignell, D.E., Nitrogen and Carbon Isotope Ratios in Termites: An Indicator of Trophic Habit along the Gradient from Wood-Feeding to Soil-Feeding, Ecol. Entomol., 1997, vol. 22, pp. 343–351.

    Article  Google Scholar 

  • Tayasu, I., Inoue, T., Miller, L.R., et al., Confirmation of Soil-Feeding Termites (Isoptera; Termitidae; Termitinae) in Australia Using Stable Isotope Ratios, Funct. Ecol., 1998, vol. 12, pp. 536–542.

    Article  Google Scholar 

  • Tayasu, I., Hyodo, F., Abe, T., et al., Nitrogen and Carbon Stable Isotope Ratios in the Sympatric Australian Termites, Amitermes laurensis and Drepanotermes rubriceps (Isoptera: Termitidae) in Relation to Their Feeding Habits and the Quality of Their Food Materials, Soil Biol. Biochem., 2002, vol. 34, pp. 297–301.

    Article  CAS  Google Scholar 

  • Tillberg, C.V. and Breed, M.D., Placing an Omnivore in a Complex Food Web: Dietary Contributions to Adult Biomass of An Ant, Biotropica, 2004, vol. 36, pp. 266–272.

    Google Scholar 

  • Trimble, S.T. and Sagers, C.L., Differential Host Use in Two Highly Specialized Ant-Plant Associations: Evidence from Stable Isotopes, Oecologia, 2004, vol. 138, pp. 74–82.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, T., Kaneko, N., Ito, M.T., et al., Analysis of the Feeding Ecology of Earthworms (Megascolecidae) in Japanese Forests Using Gut Content Fractionation and δ15N and δ13C Stable Isotope Natural Abundances, Appl. Soil. Ecol., 2004, vol. 27, pp. 153–163.

    Article  Google Scholar 

  • Van der Merwe, N.J. and Medina, E., The Canopy Effect, Carbon Isotope Ratios and Food Webs in Amazonia, J. Archaeol. Sci. 1991, vol. 18, pp. 249–259.

    Article  Google Scholar 

  • Vander Zanden, M.J. and Rasmussen, J.B., Variation in δ15N and δ13C Trophic Fractionation: Implications for Aquatic Food Web Studies, Limnol. Oceanogr., 2001, vol. 46, pp. 2061–2066.

    Article  Google Scholar 

  • Vander Zanden, M.J., Shuter, B.J., Lester, N., and Rasmussen, J.B., Patterns of Food Chain Length in Lakes: A Stable Isotope Study, Am. Nat., 1999, vol. 154, pp. 406–416.

    Article  Google Scholar 

  • Vanderklift, M.A. and Ponsard, S., Sources of Variation in Consumer-Diet δ15N Enrichment: A Meta-Analysis, Oecologia, 2003, vol. 136, pp. 169–182.

    Article  PubMed  Google Scholar 

  • Vervaet, H., Boeckx, P., Unamuno, V., et al., Can δ15N Profiles in Forest Soils Predict NO 3 Loss and Net N Mineralization Rates, Biol. Fertil. Soils, 2002, vol. 36, pp. 143–150.

    Article  CAS  Google Scholar 

  • Wada, E., Mizutani, H., and Minagawa, M., The Use of Stable Isotopes for Food Web Analysis, Crit. Rev. Food Sci., 1991, vol. 30, pp. 361–371.

    Article  CAS  Google Scholar 

  • Wayland, M. and Hobson, K.A., Stable Carbon, Nitrogen, and Sulfur Isotope Ratios in Riparian Food Webs on Rivers Receiving Sewage and Pulp-Mill Effluents, Can. J. Zool., 2001, vol. 79, pp. 5–15.

    Article  CAS  Google Scholar 

  • Webb, S.C., Hedges, R.E.M., and Simpson, S.J., Diet Quality Influences the δ13C and δ15N of Locusts and Their Biochemical Components, J. Exp. Biol., 1998, vol. 201, pp. 2903–2911.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Tiunov, 2007, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2007, No. 4, pp. 475–489.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiunov, A.V. Stable isotopes of carbon and nitrogen in soil ecological studies. Biol Bull Russ Acad Sci 34, 395–407 (2007). https://doi.org/10.1134/S1062359007040127

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359007040127

Keywords

Navigation