Skip to main content
Log in

The effect of “aging” of fibrinogen molecule on the structure and properties of fibrin gel

  • Biochemistry
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effect of molecular “aging” of fibrinogen stimulated by preincubation in solution on the fibrin three-dimensional architecture, its ability to crosslink fibrin-stabilizing factor, and the sensitivity of fibringel to plasmin hydrolysis have been studied. The method of elastic light scattering was used to demonstrate that fibrin generated from “defective” fibrinogen had a coarser structure with a higher mean mass-length ratio of polymeric fibers compared to native fibrinogen (2.24 × 109 and 1.46 × 109 g/(mol cm), respectively). Crosslinking had no effect on the architecture of both control and experimental fibrin samples. Spectrophotometric and electrophoretic analysis has shown a higher sensitivity of coarse fibrin gels to plasmin. A close correlation between spontaneous local conformational reconstructions in fibrinogen molecule and its functional activity is concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blomback, B., Fibrinogen and Fibrin-Proteins with Complex Roles in Hemostasis and Thrombosis, Thrombos. Res., 1996, vol. 83, pp. 7–75.

    Article  Google Scholar 

  • Carr, M.E. and Hermans, J., Size and Density of Fibrin FibıRs from Turbidity, Macromoltcules, 1978, vol. 11, pp. 46–50.

    Article  CAS  Google Scholar 

  • Casassa, E.F., Light Scattering from Very Long Rod-Like Particles and an Application to Polymerized Fibrinogen, J. Chem. Phys., 1955, vol. 23, pp. 596–597.

    Article  CAS  Google Scholar 

  • Chen, R. and Doolittle, R.J., Crosslinking Sites in Human and Bovine Fibrin, Biochemistry, 1971, vol. 10, pp. 4486–4491.

    Article  CAS  Google Scholar 

  • Collet, J.P., Moen, J.L., Veclich, Y.I., et al., The (Alfa) C Domains of Fibrinogen Affect the Structure of the Fibrin Clot, Its Physical Properties, and Its Susceptibility to Fibrinolysis, Blood, 2005, vol. 9, pp. 1157–1162.

    Google Scholar 

  • Collet, J.P., Park, D., Lesty, C., et al., Influence of Fibrin Network Conformation and Fibrin Fiber Diameter on Fibrinolysis Speed: Dynamic and Structural Approaches by Confocal Microscopy, Arterioscler. Throm. Vasc. Biol., 2000, vol. 20, no. 5, pp. 1354–1361.

    CAS  Google Scholar 

  • Deutsch, D.G. and Mertz, E.J., Plasminogen: Purification from Human Plasma by Affinity Chromatography, Science, 1970, vol. 170, pp. 1095–1098.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, R.F., Structural Basis of the Fibrinogen-Fibrin Transformation: Contributions from X-Ray Crystallography, Blood Rev., 2003, vol. 17, no. 1, pp. 33–41.

    Article  PubMed  Google Scholar 

  • Hantgan, R.R. and Hermans, J., Assembly of Fibrin: a Light Scattering Study, J. Biol. Chem., 1979, vol. 254, pp. 11272–11277.

    PubMed  CAS  Google Scholar 

  • Janmey, P.A. and Ferry, J.D., Gel Formation by Fibrin Oligomers without Addition Monomers, Biopolymers, 1986, vol. 25, pp. 1337–1344.

    Article  PubMed  CAS  Google Scholar 

  • Janmey, P.A., Bale, V.D., and Ferry, J.D., Polymerization of Fibrin: Analysis of Light-Scattering Data and Relation to a Peptide Release, Biopolymers, 1983, vol. 22, pp. 2017–2019.

    Article  PubMed  CAS  Google Scholar 

  • Leonova, V.B., Rozenfel’d, M.A., Biryukova, M.I., et al., The Influence of The End Products of Plasmin-Mediated Hydrolysis of Fibrinogen and Fibrin (EF and Ef Fragments) on Fibrinogen Cross-linking, Izv. Akad. Nauk, Ser. Biol., 2002, no. 5, pp. 522–526.

  • Marder, V.J., Shulmal, N.R., and Carroll, W.R., High Molecular Weight Derivatives of Human Fibrinogen Produced by Plasmin, Biol. Chem., 1969, vol. 244, pp. 2111–2119.

    CAS  Google Scholar 

  • Mosesson, M.W., Fibrin Polymerization and Its Regulatory Role in Hemostasis, J. Lab. Clin. Med., 1990, vol. 116, pp. 8–17.

    PubMed  CAS  Google Scholar 

  • Muller, M., Lasarcek, H., and Burchard, W., Fibrinogen-Fibrin Transformation: 2. Influence of Temperature, pH and of Various Enzymes on the Intermediate Structures, Int. J. Biol. Macromol., 1981, vol. 3, pp. 19–24.

    Article  Google Scholar 

  • Pirke, H., Vicasin, P., and Niyada, D., Relationship of Final Thickness of Fibrin Fibers to Maximal Rate of Assembly and to Fibrinopeptide B Release, in Fibrinogen, Fibrin Formation and Fibrinolisis, Gruyter, W., Ed., Berlin: Excerpta medica, 1986, vol. 4, pp. 69–75.

    Google Scholar 

  • Pisano, J.J., Finlayson, J.S., Peyton, M.P., and Nayai, J., “ɛ-(γ-Glutamyl) Lysine in Fibrin—Lack of Crosslink Formation in Factor XIII Deficiency, Proc. Nat. Acad. Sci. USA, 1971, vol. 68, pp. 770–772.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, K.C. and Summaria, L., Human Plasminogen and Plasmin, Metod. Enzymol., 1970, vol. 19, pp. 184–191.

    Article  CAS  Google Scholar 

  • Rozenfel’d, M.A. and Vasil’eva, M.V., Mechanism of Aggregation of Fibrinogen Molecules: The Influence of Fibrin-Stabilising Factor, Biomed. Sci., 1991, vol. 2, pp. 155–161.

    PubMed  CAS  Google Scholar 

  • Rozenfel’d, M.A., Gershkovich, K.B., Kuznetsov, D.V., et al., Mechanism of Self-Assembly of Soluble Fibrin Oligomers and the Role of Fibrinopeptides A and B in This Process, Mol. Biol., 1986, vol. 20, no. 4, pp. 1098–1110.

    CAS  Google Scholar 

  • Rozenfel’d, M.A., Gershkovich, K.B., and Kuznetsov, D.V., Structural Transformations of Fibrin Oligomers, Mol. Biol., 1988, vol. 22, no. 1, pp. 86–93.

    CAS  Google Scholar 

  • Rozenfel’d, M.A., Kostanova, E.A., Vasil’eva, M.V., and Leonova, V.B., The Structural Conversion of X-Oligomers, Izv. Akad. Nauk, Ser. Biol., 1999, no. 4, pp. 396–402.

  • Rozenfel’d, M.A., Kostanova, E.A., Vasil’eva, M.V., and Leonova, V.B., The Mechanism of Cross-Linking of Fibrinogen and Its Early Structural Homolog—X Fragment, Izv. Akad. Nauk, Ser. Biol., 2001, no. 3, pp. 393–298.

  • Shen, L.L., Hermans, J., and McDonagh, J., Role of Fibrinopeptide B: Comparison of Fibrins Produced by Trombin and Ancrod, Am. J. Physiol., 1977, vol. 232, pp. 629–633.

    Google Scholar 

  • Veklich, J.I., Gorkun, O.V., Medved’, L.V., et al. Carboxyl-Terminal Portions of the Chains of Fibrinogen and Fibrin, J. Biol. Chem., 1993, vol. 18, pp. 13577–13585.

    Google Scholar 

  • Weisel, J.V., Fibrinogen and Fibrin, Adv. Protein. Chem., 2005, vol. 70, pp. 247–299.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., Mochalkin, I., and Doolittle, R.F., A Model of Fibrin Formation Based on Crystal Structures of Fibrinogen and Fibrin Fragments Complexed with Synthetic Peptides, Biochemistry, 2000, vol. 97, no. 26, pp. 1456–1461.

    Google Scholar 

  • Yang, Z., Kollman, J.M., Pandi, L., and Doolittle, R.F., Crystal Structure of Native Chicken Fibrinogen at 2.7 A Resolution, Biochemistry, 2001, vol. 40, no. 42, pp. 12515–12523.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.A. Rozenfel’d, V.B. Leonova, M.I. Biryukova, 2007, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2007, No. 4, pp. 394–401.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozenfel’d, M.A., Leonova, V.B. & Biryukova, M.I. The effect of “aging” of fibrinogen molecule on the structure and properties of fibrin gel. Biol Bull Russ Acad Sci 34, 323–328 (2007). https://doi.org/10.1134/S1062359007040024

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359007040024

Keywords

Navigation