Skip to main content
Log in

Effect of entomopathogenic fungi on detoxification enzyme activity in greater wax moth Galleria mellonella L. (Lepidoptera, Pyralidae) and role of detoxification enzymes in development of insect resistance to entomopathogenic fungi

  • Animal and Human Physiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Fungal infection of insects increases total esterase and glutathione S-transferase activities in the hemolymph. Activities of acid and alkaline phosphatases were similar in the infected and intact insects. Fungal infection increased the resistance of greater wax moth caterpillars to organophosphorus insecticide malathion 1.46 times relative to intact caterpillars. Possible involvement of detoxification enzymes in the development of insect resistance to entomopathogenic fungi and development of complex biological products based on entomopathogenic microorganisms and inhibitors of detoxification enzymes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Androsov, G.K. and Alieva, M.I., Protective Responses of Insect Hemolymph to Mycotoxicosis, Zh. Obshch. Biol., 1980, vol. 41, pp. 726–733.

    CAS  Google Scholar 

  • Bahiense, T.C. and Bittencourt, V.R., Laboratory Evaluation of the Compatibility and the Synergism between the Entomopathogenic Fungus Beauveria bassiana and Deltamethrin to Resistant Strains of Boophilus Microplus, Anal. New York Acad. Sci., 2004, vol. 1026, pp. 319–322.

    Article  Google Scholar 

  • Bakanova, E.I., Eremina, O.Yu., and Roslavtseva, S.A., The Role of Insect Microsomal Monooxygenases in Insecticide Degradation, Agrokhimiya, 1996, no. 10, pp. 145–154.

  • Bents, G., Synergy of Microorganisms and Chemical Insecticides, in Mikroorganizmy v bor’be s vrednymi nasekomymi i kleshchami (Microorganisms in Insect and Mite Control), Gilyarov, M.S., Ed., Moscow: Kolos, 1976.

    Google Scholar 

  • Bradford, M., A Rapid and Sensitive Method for the Quantitation of Protein Utilizing the Principle of Protein Dye Binding, Anal. Biochem., 1979, vol. 72, pp. 248–254.

    Article  Google Scholar 

  • Clark, J.M., Scott, J.G., Campos, F., and Bloomquist, J.R., Resistance to Avermectins: Extent, Mechanisms, and Management Implications, Annu. Rev. Entomol., 1995, vol. 40, pp. 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Danielson, P.B., Foster, J.L.M., McMahill, M.M., et al., Induction by Alkaloids and Phenobarbital of Family 4 Cytochrome P450s in Drosophila: Evidence for Involvement in Host Plant Utilization, Mol. Gen. Genet., 1998, vol. 259, pp. 54–59.

    Article  PubMed  CAS  Google Scholar 

  • Danielson, P.B., MacIntyre R.J., Fogleman J.C. Molecular Cloning of a Family of Xenobiotic-Inducible Drosophilid Cytochrome P450s: Evidence for 100 Involvement in Host-Plant Allelochemical Resistance, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 10797–10802.

    Article  PubMed  CAS  Google Scholar 

  • Enayati, A.A., Ranson, H., and Hemingway, J., Insect Glutathione Transferases and Insecticide Resistance, Insect Mol. Biol., 2005, vol. 14, pp. 3–8.

    Article  PubMed  CAS  Google Scholar 

  • Feng, M.G. and Pu, X.Y., Time-Concentration-Mortality Modeling of the Synergistic Interaction of Beauveria bassiana and Imidacloprid against Nilaparvata lugens, Pest. Manag. Sci., 2005, vol. 61, pp. 363–370.

    Article  PubMed  CAS  Google Scholar 

  • Feyereisen, R., Insect P450 Enzymes, Ann. Rev. Entomol., 1999, vol. 44, pp. 507–533.

    Article  CAS  Google Scholar 

  • Fuchs, S.Y., Spiegelman, V.S., and Belitsky, G.A., The Effect of the Cytochrome P-450 System Inducers on the Development of Drosophila melanogaster, J. Biochem. Toxicol., 1993, vol. 8, pp. 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Gafurova, V.A., Ways to Increase the Pathogenicity of Fungus Veauveria bassiana and Results of Its Application in Pest Control, Izv. Akad. Nauk Tadzh. SSR. Otd. Biol. Nauk, 1976, no. 4, pp. 52–57.

  • Glupov, V.V. and Bakhvalov, S.A., Mechanisms of Insect Resistance in Pathogenesis, Usp. Sovrem. Biol., 1998, vol. 118, pp. 466–482.

    Google Scholar 

  • Goral’, V.M., Occurrence of Active Forms of Entomopathogenic Fungus Beauveria in Biocenoses, in Biosfera i chelovek (Biosphere and Man), Moscow: Nauka, 1975, pp. 242–243.

    Google Scholar 

  • Goryunova, T.E., Vainer, L.M., Sidorov, V.N., et al., Use of [3H]-Permethrin to Evaluate Esterase Activity in Caterpillars of Beet Webworm Pyrausta sticticalis L., Agrokhimiya, 1991, no. 2, pp. 118–121.

  • Habig, W.H., Pabst, M.J., and Jakoby, W.B., Glutathion S-Transferases, Biol. Chem., 1974, vol. 249, pp. 7130–7139.

    CAS  Google Scholar 

  • Hajek, A.E., Elkinton, J.S., and Humber, R.A., Entomopathogenic Hyphomycetes Associated with Gypsy Moth Larvae, Mycologia, 1997, vol. 89, pp. 825–829.

    Google Scholar 

  • Hughes, W.O., Thomsen, L., Eilenberg, J., and Boomsma, J.J., Diversity of Entomopathogenic Fungi Near Leaf-Cutting Ant Nests in a Neotropical Forest, with Particular Reference to Metarhizium anisopliae var. Anisopliae, J. Invertebr. Pathol., 2004, vol. 85, pp. 46–53.

    Article  PubMed  CAS  Google Scholar 

  • Hung, S.Y., Boucias, D.G., and Vey, A.J., Effect of Beauveria bassiana and Candida albicans on the Cellular Defense Response of Spodoptera exigua, J. Invertebr. Pathol., 1993, vol. 61, pp. 179–187.

    Article  PubMed  CAS  Google Scholar 

  • Kharsun, A.I., Biokhimiya nasekomykh (Insect Biochemistry), Chisinau: Kartya Moldovenyaske, 1976.

    Google Scholar 

  • Klimpinya, A.E., Insect Rearing on Artificial Media, in Entomopatogennye mikroorganizmy i ikh ispol’zovanie v bor’be s vreditelyami rastenii (Entomopathogenic Microorganisms and Their Use in Plant Pest Control), Riga: Zinatne, 1977, pp. 103–111.

    Google Scholar 

  • Klochko, Z.F. and Koval’, E.E., Abundance Variations in Some Noctuid Species (Lepidoptera, Noctuida) Induced by Entomopathogenic Fungi in Ukraine, Entomol. Obozr., 1981, vol. 60, pp. 754–760.

    Google Scholar 

  • Kol’chevskaya, E.N. and Kol’chevkii, A.G., Analysis of Isozymes of Nonspecific Esterases in Cabbage Moth Infected with Vairimorpha antheraeae Microsporidia, Byull. VIZR, 1988, no. 71.

  • Kristensen, M., Jespersen, J.B., and Knorr, M., Cross-Resistance Potential of Fipronil in Musca domestica, Pest. Manag. Sci., 2004, vol. 60, pp. 894–900.

    Article  PubMed  CAS  Google Scholar 

  • Kucera, M., Properties of Acid Phosphatase Formed in Galleria mellonella Larvae during Microsporidial Disease (Lepidoptera), Acta. Entomol. Bohemosl., 1978, vol. 75, pp. 83–89.

    CAS  Google Scholar 

  • Leger, R.J.St., Cooper, R.M., and Charnley, A.K., The Effect of Melanization of Manduca sexta Cuticle on Growth and Infection by Metarhizium Anisopliae, J. Invertebr. Pathol., 1988, vol. 52, pp. 459–470.

    Article  Google Scholar 

  • Lord, J.C. and Howard, R.W., A Proposed Role for the Cuticular Fatty Amides of Liposcelis bostrychophila (Psocoptera: Liposcelidae) in Preventing Adhesion of Entomopathogenic Fungi with Dry-Conidia, Mycopathologia, 2004, vol. 158, pp. 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Madziara-Borusiewiez, K. and Kucera, M., Enzyme Changes in Galleria mellonella Caused by an Unknown Pathogen from the Larvae of Acantholyda Nemoralis (Hymenoptera, Pamphiliidae), Acta Entomol. Bohemosl., 1978, vol. 75, pp. 353–356.

    Google Scholar 

  • McCauley, V.J.E., Zacharuk, R.Y., and Tinline, R.D., Histopathology of Green Muscardine in Larvae of Four Species of Elateridae (Coleoptera), J. Invertebr. Pathol., 1968, vol. 12, pp. 444–459.

    Article  Google Scholar 

  • Nikol’skaya, E.A., Growth of Microscopic Fungi, in Metody eksperimental’noi mikologii (Methods of Experimental Mycology), Bilai, V.I., Ed., Kiev: Naukova Dumka, 1982.

    Google Scholar 

  • Pedro, H.C. and Candido, S.A., Entomopathogenic Fungi Associated with Natural Populations of the Moroccan Locust Dociostaurus maroccanus (Thunberg) (Orthoptera: Gomphocerinae) and Other Acridoidea in Spain, Biocontr. Sci. Technol., 1997, vol. 7, pp. 357–363.

    Article  Google Scholar 

  • Pekrul, S. and Grula, E.A., Mode of Infection of the Cirn Earworm (Heliothis zae) by Beauveria bassiana as Revealed by Scanning Electron Microscopy, J. Invertebr. Pathol., 1979, vol. 34, pp. 238–249.

    Article  CAS  Google Scholar 

  • Prabhakaran, S.K. and Kamble, S.T., Activity and Electrophoretic Characterization of Esterases in Insecticide-Resistant and Susceptible Strain of German Cockroach (Dictyotera: Blattellida), J. Econ. Entomol., 1993, vol. 86, pp. 1009–1013.

    PubMed  CAS  Google Scholar 

  • Roslavtseva, S.A., Physical and Biochemical Basis of Arthropod Control, Itogi nauki i tekhniki. Entomologiya (Results of Science and Technology. Entomology), Moscow: VINITI, 1988, vol. 8.

    Google Scholar 

  • Roslavtseva, S.A., Current Views of Biochemical Mechanisms of Resistance, Agrokhimiya, 1994, no. 10, pp. 143–148.

  • Serebrov, V.V., Alekseev, A.A., and Glupov, V.V., Changes in Activity and Pattern of Hemolymph Esterases in Larvae of Wax Moth Galleria mellonella L. (Lepidoptera, Pyralidae) during Mycosis, Izv. Akad. Nauk, Ser. Biol., 2001, vol. 28, no. 5, pp. 588–592.

    Google Scholar 

  • Serebrov, V.V., Kiselev, A.A., and Glupov, V.V., Study of Some Factors of Synergy between Entomopathogenic Fungi and Chemical Insecticides, Mikol. Fitopatol., 2003, vol. 37, no. 1, pp. 76–82.

    CAS  Google Scholar 

  • Shiotsuki, T. and Kato, Y., Induction of Carboxylesterase Isozymes in Bombyx mori by E. coli, Insect Biochem. Molec. Biol., 1996, vol. 29, pp. 731–736.

    Article  Google Scholar 

  • Sokolova, Yu.Ya. and Sundukov, O.V., Inhibition of Esterase Activity as a Property of Microsporidial Pathogenesis in Cricket Gyllus bimaculatus, Parazitologiya, 1999, vol. 33, no. 6, pp. 527–537.

    CAS  Google Scholar 

  • Sujak, P., Ziemnicki, K., Ziemnicka, J., and Lipa, J., Obuchowicz Acid and Alkaline Posphatase Activity in the Fat Body and Midgut of the Beet Armyworm, Spodoptera exegua (Lepidoptera; Noctuidae), Infected with Nuclear Polyhedrosis Virus, J. Invertebr. Pathol., 1978, vol. 31, pp. 7–9.

    Google Scholar 

  • Svikle, M.Ya., Application of Biological Product Boverin together with Low Trichlorfon doses in Colorado Potato Beetle Control, Byul. VIZR, 1971, no. 18, pp. 41–42.

  • Terriere, L.C., Induction of Detoxication Enzymes in Insects, Ann. Rev. Entomol., 1984, vol. 29, pp. 71–88.

    Article  CAS  Google Scholar 

  • Wu, G., Jiang, S., and Miyata, T., Effects of Synergists on Toxicity of Six Insecticides in Parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae), J. Econ. Entomol., 2004, vol. 97, pp. 2057–2066.

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y., Clarkson, J.M., and Charnley, A.K., Acid Phosphatases of Metarhizium anisopliae during Infection of the Tobacco Hornworm Manduca sexta, Arch. Microbiol., 2001, vol. 176, pp. 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y., Dean, P., Judge, A.J., Gillespie, J.P., Clarkson, J.M., and Charnley, A.K., Acid Phosphatases in the Haemolymph of the Desert Locust, Schistocerca gregaria, Infected with the Entomopathogenic Fungus Metarhizium anisopliae, J. Insect Pysiol., 2000, vol. 46, pp. 1249–1257.

    Article  CAS  Google Scholar 

  • Zieminicka, J., Entopathogenic Fungi in Populations of the Satin Moth Stilpnotia salicis, J. Plant Prot. Res, 1997, vol. 37, pp. 128–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Serebrov, O.N. Gerber, A.A. Malyarchuk, V.V. Martemyanov, A.A. Alekseev, V.V. Glupov, 2006, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2006, No. 6, pp. 712–718.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serebrov, V.V., Gerber, O.N., Malyarchuk, A.A. et al. Effect of entomopathogenic fungi on detoxification enzyme activity in greater wax moth Galleria mellonella L. (Lepidoptera, Pyralidae) and role of detoxification enzymes in development of insect resistance to entomopathogenic fungi. Biol Bull Russ Acad Sci 33, 581–586 (2006). https://doi.org/10.1134/S1062359006060082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359006060082

Keywords

Navigation