Skip to main content
Log in

Physiological and agrochemical properties of different symbiotic genotypes of pea (Pisum sativum L.)

  • Plant Physiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Physiological characters of symbiotic mutants of pea were studied: nodulation, activities of nitrogenase and nitrate reductase, chlorophyll content in leaves and their water-holding capacity, biomass accumulation, and nitrogen forms. The parameters reflecting the genotype state of the macrosymbiont under soil conditions considerably varied. Supernodulation mutants stood out against symbiotic pea genotypes by high contents of chlorophyll and nonprotein nitrogen compounds, high nitrogenase activity, and low nitrate reductase activity. The efficiency of the legume-rhizobium symbiosis was largely mediated by the macrosymbiont genotype. The highest atmospheric nitrogen fixation (50–80%) was observed in the parental pea varieties. Despite the highest nitrogenase activity in the nodules, the supernodulation mutants were inferior to the parental varieties by the nitrogen fixation capacity (40–60%), which was due to their low productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrokhimicheskie metody issledovaniya pochv (Agrichemical Methods for Soil Study), Moscow: Nauka, 1975, p. 383.

  • Brei, S.M., Azotnyi obmen v rasteniyakh (Nitrogen Metabolism in Plants), Moscow: Agropromizdat, 1986.

    Google Scholar 

  • Breseanu, A.G., Davis, B.G., and Schimadacuro, R.H., Ultrastructural Effects and Translocation of Methyl-2 (2,4 Dichlorphenoxy-Phenoxy) Propanoate in Wheat (Triticum aestivum L.) and Wild Oat (Avena fatua), Canad. J. Bot., 1981, vol. 54, pp. 2038–2048.

    Google Scholar 

  • Gavrilenko, V.F., Laydgina, M.E., and Khandobina, L.M., Bol’shoi praktikum po fiziologii rastenii (Manual of Plant Physiology), Moscow: Vysshaya Shkola, 1975.

    Google Scholar 

  • Gusev, N.A. and Sedykh, N.V., Current Methods to Study Water State and Molecular Mechanisms of Water Metabolism in Plant Cell, S.-Kh. Biol., 1971, vol. 6, no. 6, pp. 930–939.

    CAS  Google Scholar 

  • Hardy, R.W.F., Holsten, R.D., Jackson, E.K., and Burns, R.C., The Acetylene-Ethylene Assay for N2 Fixation: Laboratory and Field Evaluation, Plant Physiol., 1968, vol. 43, no. 8, pp. 1185–1207.

    Article  PubMed  CAS  Google Scholar 

  • Havelka, U.D., Boyle, M.G., Hardy, R.W.F., Biological Nitrogen Fixation, in Nitrogen in Agricultural Soils, Madison: Am. Soc. Agron., 1985, pp. 365–413.

    Google Scholar 

  • Izmailov, S.F., Azotnyi obmen v rasteniyakh (Nitrogen Metabolism in Plants), Moscow: Nauka, 1986.

    Google Scholar 

  • Kochergin, A.E., Fertilization Efficiency on Chernozems in Western Siberia, in Agrokhimicheskaya kharakteristika pochv SSSR. Raiony Zapadnoi Sibiri (Agrochemical Description of Soils in the USSR. Western Siberia), Moscow: Nauka, 1968, pp. 316–336.

    Google Scholar 

  • Kretovich, V.L., Obmen azota v rasteniyakh (Nitrogen Metabolism in Plants), Moscow: Nauka, 1972.

    Google Scholar 

  • Kuzyakov, Ya.V., Tracer Studies of Carbon Translocation by Plants from the Atmosphere into the Soil (A Review), Pochvovedenie, 2001, no. 1, pp. 36–51.

  • Maevskaya, S.N., Egorova, E.A., and Bukhov, N.G., Effect of Elevated Temperature on Nitrite and Nitrate Reduction in Leaves and Intact Chloroplasts, Fiziol. Rast., 2003, vol., 50, pp. 675–679.

    Google Scholar 

  • Mishustin, E.N., Mikroorganizmy i produktivnost zemledeliya (Microorganisms and Agricultural Productivity), Moscow: Nauka, 1972.

    Google Scholar 

  • Nazaryuk, V.M., Balans i transformatsiya azota v agroekosistemakh (Nitrogen Balance and Transformation in Agroecosystems), Novosibirsk: Nauka. Sib. otd-nie, 2002.

    Google Scholar 

  • Nazaryuk, V.M., Sidorova, K.K., Shumnyi, V.K., and Klenova, M.I., A New Method to Evaluate the Efficiency of the Legume-Rhizobial Symbiosis under Field Conditions, Agrokhimiya, 2003, no. 1, pp. 61–67.

  • Nazaryuk, V.M., Yakutina, O.P., and Klenova, M.I., The Role of Soil Resources, Nimeral Nutrition, and Symbiotic Nitrogen Fixation in High Plant Productivity, S.-Kh. Biol., 2004a, no. 5, pp. 13–21.

  • Nazaryuk, V.M., Klenova, M.I., Kalimullina, F.R., and Sidorova, K.K., The Role of Soil Properties, Fertilizers, and Plant Genotype in the Efficiency of the Legume-Rhizobial Symbiosis, in Mater. IV s’ezda Dokuchaevskogo o-va pochvovedov. Kn. 2 (Proc. IV Conf. Dokuchaev Soil Sci. Soc.), Novosibirsk: Nauka-Tsentr, 2004b.

    Google Scholar 

  • Nicolas, M.F., Arrabal Arias, C.A., and Hungria M. Genetics of Nodulation and Nitrogen Fixation in Brazilian Soybean Cultivars, Biol. Fertil. Soils. 2002, vol. 36, no. 2, pp. 109–117.

    Article  CAS  Google Scholar 

  • Pekker, E.G. and Tokarev, B.I., Agrochemical Variant of the Method to Evaluate the Nitrate-Reducing Capacity of Cereal Crops, Sib. Vestn. S.-Kh. Nauki, 1982, no. 6, pp. 83–85.

  • Peterburgskii, A.V., Praktikum po agronomicheskoi khimii (Practical Course in Agronomic Chemistry), Moscow: Kolos, 1968.

    Google Scholar 

  • Pleshkov, A.S. and Kokareva, V.A., USSR Inventor’s Certificate No. 1329680, Byull. Izobret., 1987, no. 30.

  • Posypanov, G.S., Methodical Aspects of Studying Symbiotic Activity of Legume Crops under Field Conditions, Izv. Timiryazevsk. S-kh. Akad., 1983, no. 5, pp. 17–26.

  • Pryanishnikov, D.N., Azot v zhizni rastenii i v zemledelii (Nitrogen in Plant Life and Agriculture), Moscow: Izd-vo s.-kh. lit, 1953.

    Google Scholar 

  • Shumnyi, V.K., Sidorova, K.K., Klevenskaya, I.L., et al., Biologicheskaya fiksatsiya azota (Biological Nitrogen Fixation), Novosibirsk: Nauka. Sib. otd-nie, 1991.

    Google Scholar 

  • Sidorova, K.K. and Shumnyi, V.K., Creation and Genetic Study of a Collection of Symbiotic Mutants of the Pea (Pisum sativum L.), Genetika, 2003, vol. 39, no. 4, pp. 501–509.

    PubMed  CAS  Google Scholar 

  • Stevenson, F.J., Cycles of Soil Carbon, Nitrogen, Phosphorus, Sulphur, Micronutrients, New York: J. Wiley & Sons, 1986.

    Google Scholar 

  • Streeter, J.G. Symbiotic Nitrogen Fixation, in Plant-Enviroment Interactions, Wilkinson, R.E., Ed., New York: Marcel Dekker, 1994, pp. 245–62.

    Google Scholar 

  • Tokarev, B.I. and Shumnyi, V.K., Genetic Control and Mechanisms to Regulate Nitrate Reductase Activity, Genetika, 1976, vol. 12, no. 3, pp. 141–152.

    CAS  Google Scholar 

  • Trepachev, E.P., Agrokhimicheskie aspekty biologicheskogo azota v sovremennom zemledelii (Agrochemical Aspects of Biological Nitrogen in Current Agriculture), Moscow: Agrokonsalt, 1999.

    Google Scholar 

  • Troitskaya, G.N., Gadimov, A.G., and Izmailov, S.F., The Role of Small Nitrate Doses and Symbiotically Fixed Nitrogen in Nitrogen Nutrition during Soybean Ontogeny, Fiziol. Rast., 1993, vol. 40, pp. 448–457.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Nazaryuk, K.K. Sidorova, V.K. Shumnyi, F.R. Kalimullina, M.I. Klenova, 2006, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2006, No. 6, pp. 688–697.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazaryuk, V.M., Sidorova, K.K., Shumny, V.K. et al. Physiological and agrochemical properties of different symbiotic genotypes of pea (Pisum sativum L.). Biol Bull Russ Acad Sci 33, 559–567 (2006). https://doi.org/10.1134/S1062359006060057

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359006060057

Keywords

Navigation