Skip to main content
Log in

Methods of Atomic Spectroscopy in Studying Properties and the Behavior of Nanoscale Magnetic Materials in Biological Systems

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

In this review, we provide an overview of methods for synthesizing magnetic nanoparticles (MNPs) with potential applications to biomedical research. We explore how the structure and properties of these particles are related to their diverse uses in medical diagnostics and bioanalysis. Special emphasis is placed on MNPs containing noble metals, which serve as biomarkers or active agents. Specifically, we focus on the application of direct and combined methods of atomic spectroscopy (ETAAS, AES/ICP–MS) to biomedical research. Experimental approaches to studying the behavior and transformations of MNPs in vitro and in vivo are considered. The importance of proper sample preparation in simulating the behavior of nanoparticles in biological media is highlighted. We also examine the significance of preparation techniques for the accurate determination of dissolved and nanosized forms in biological samples. Lastly, we assess the potential for the comprehensive studies of MNP behavior within complex biological systems, pointing toward future directions in this dynamic and promising field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Albumin is used to solve two problems: (1) to ensure the biocompatibility and reduce the toxicity of nanodrugs and (2) to release the loaded drug under the action of enzymes destroying the protective protein layer.

REFERENCES

  1. Nochehdehi, A.R., Thomas, S., Sadri, M., Afghahi, S.S.S., and Mehdi Hadavi, S.M., J. Nanomed. Nanotechnol., 2017, vol. 8, no. 1, p. 423. https://doi.org/10.4172/2157-7439.1000423

    Article  CAS  Google Scholar 

  2. Korolev, D.V., Doctoral (Chem.) Dissertation, St. Petersburg: Almazov Natl. Med. Res. Centre, 2019.

  3. Sandler, S.E., Fellows, B., and Mefford, O.T., Anal. Chem., 2019, vol. 91, p. 14159. https://doi.org/10.1021/acs.analchem.9b03518

    Article  CAS  PubMed  Google Scholar 

  4. Ganta, S., Devalapally, H., Shahiwala, A., and Amiji, M., J. Controlled Release, 2008, vol. 126, no. 3, p. 187. https://doi.org/10.1016/j.jconrel.2007.12.017

    Article  CAS  Google Scholar 

  5. Nanoparticles for Drug Delivery, Joshy, K.S., Sabu, Th., Vijay Kumar, Th., Eds., Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-2119-2

  6. Xu, C. and Sun, S., Adv. Drug Delivery Rev., 2013, vol. 65, no. 5, p. 732. https://doi.org/10.1016/j.addr.2012.10.008

    Article  CAS  Google Scholar 

  7. Zelepukin, I.V., Yaremenko, A.V., Ivanov, I.N., Yuryev, M.V., Cherkasov, V.R., Deyev, S.M., Nikitin, P.I., and Nikitin, M.P., ACS Nano, 2021, vol. 15, p. 11341. https://doi.org/10.1021/acsnano.1c00687

    Article  CAS  PubMed  Google Scholar 

  8. Handbook of Bioanalytics, Buszewski, B. and Baranowska, I., Cham: Springer, 2022. https://doi.org/10.1007/978-3-030-95660-8

  9. ICP–MS and Trace Element Analysis as Tools for Better Understanding Medical Conditions, Arruda, M.A.Z. and de Jesus, J.R., Eds., Comprehensive Analytical Chemistry, vol. 97, Amsterdam: Elsevier, 2022. https://www.sciencedirect.com/science/journ-al/0166526X/97/ supp/C

  10. Hurley, K.R., Ring, H.L., Kang, H., Klein, N.D., and Haynes, C.L., Anal. Chem., 2015, vol. 87, p. 11611. https://doi.org/10.1021/acs.analchem.5b02229

    Article  CAS  PubMed  Google Scholar 

  11. Anselmo, A.C. and Mitragotri, S., Bioeng. Transl. Med., 2019, vol. 4, no. 3, p. e10143. https://doi.org/10.1002/btm2.10143

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kharisov, B.I., Rasika Dias, H.V., Kharissova, O.V., Vazquez, A., Pena, Y., and Gomez, I., RSC Adv., 2014, vol. 4, no. 85, p. 45354. https://doi.org/10.1039/C4RA06902A

    Article  CAS  Google Scholar 

  13. Xie, L., Jiang, R., Zhu, F., Liu, H., and Ouyang, G., Anal. Bioanal. Chem., 2014, vol. 406, no. 2, p. 377. https://doi.org/10.1007/s00216-013-7302-6

    Article  CAS  PubMed  Google Scholar 

  14. Pryazhnikov, D.V. and Kubrakova, I.V., J. Anal. Chem., 2021, vol. 76, no. 6, p. 685. https://doi.org/10.1134/S1061934821060095

    Article  CAS  Google Scholar 

  15. Kudr, J., Haddad, Y., Richtera, L., Heger, Z., Cernak, M., Adam, V., and Zitka, O., Nanomaterials, 2017, vol. 7, no. 9, p. 243. https://doi.org/10.3390/nano7090243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pryazhnikov, D.V., Kubrakova, I.V., Kiseleva, M.S., Martynov, L.Yu., and Koshcheeva, I.Ya., Mendeleev Commun., 2014, vol. 24, no. 2, p. 130. https://doi.org/10.1016/j.mencom.2014.03.023

    Article  CAS  Google Scholar 

  17. Kubrakova, I.V. and Pryazhnikov, D.V., J. Anal. Chem., 2021, vol. 76, no. 1, p. 15. https://doi.org/10.1134/S1061934821010044

    Article  CAS  Google Scholar 

  18. Mekseriwattana, W., Srisuk, S., Kriangsaksri, R., Niamsiri, N., and Prapainop, K., AAPS PharmSciTech, 2019, vol. 20, p. 55. https://doi.org/10.1208/s12249-018-1275-x

    Article  CAS  PubMed  Google Scholar 

  19. Timerbaev, A.R., Talanta, 2022, vol. 243, p. 123371. https://doi.org/10.1016/j.talanta.2022.123371

    Article  CAS  PubMed  Google Scholar 

  20. Nigam, S., Chandra, S., Newgreen, D.F., Bahadur, D., and Chen, Q., Langmuir, 2014, vol. 30, p. 1004. https://doi.org/10.1021/la404246h

    Article  CAS  PubMed  Google Scholar 

  21. Gaihre, B., Khil, M.S., Lee, D.R., and Kim H.Y., Int. J. Pharm., 2009, vol. 365, p. 180. https://doi.org/10.1016/j.ijpharm.2008.08.020

    Article  CAS  PubMed  Google Scholar 

  22. Lee, J.E., Lee, D.J., Lee, N., Kim, B.H., Choi, S.H., and Hyeon, T., J. Mater. Chem., 2011, vol. 21, p. 16869. https://doi.org/10.1039/C1JM11869B

    Article  CAS  Google Scholar 

  23. N’Guyen, T.T.T., Duong, H.T.T., Basuki, J., Montembault, V., Pascual, S., Guibert, C., Fresnais, J., Boyer, C., Whittaker, M.R., Davis, T.P., and Fontaine, L., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 14152. https://doi.org/10.1002/anie.201306724

    Article  CAS  PubMed  Google Scholar 

  24. Yuan, L., Tang, Q., Yang, D., Zhang, J.Z., Zhang, F., and Hu, J., J. Phys. Chem. C, 2011, vol. 115, p. 9926. https://doi.org/10.1021/jp201053d

    Article  CAS  Google Scholar 

  25. Shen, J., He, Q., Gao, Y., Shi, J., and Li, Y., Nanoscale, 2011, vol. 3, p. 4314. https://doi.org/10.1039/c1nr10580a

    Article  CAS  PubMed  Google Scholar 

  26. Pryazhnikov, D.V., Efanova, O.O., Kiseleva, M.S., and Kubrakova, I.V., Nanotechnol. Russ., 2017, vol. 12, p. 199. https://doi.org/10.1134/S1995078017020094

    Article  CAS  Google Scholar 

  27. Liu, J., Detrembleur, C., De Pauw-Gillet, M.-C., Mornet, S., Van der Elst, L., Laurent, S., Jerome, C., and Duguet, E., J. Mater. Chem. B, 2014, vol. 2, p. 59. https://doi.org/10.1039/c3tb21229g

    Article  CAS  PubMed  Google Scholar 

  28. Ménard, M., Meyer, F., Affolter-Zbaraszczuk, C., Rabineau, M., Adam, A., Duenas Ramirez, P., Bégin-Colin, S., and Mertz, D., Nanotecnology, 2019, vol. 30, no. 17, p. 174001. https://doi.org/10.1088/1361-6528/aafe1c

    Article  CAS  Google Scholar 

  29. Wang, Y., Wang, B., Liao, H., Song, X., Wu, H., Wang, H., Shen, H., Ma, X., and Tan, M., J. Mater. Chem. B, 2015, vol. 3, p. 7291. https://doi.org/10.1039/c5tb01197c

    Article  CAS  PubMed  Google Scholar 

  30. Jin, Y., Yue, X., Zhang, Q., Wu, X., Cao, Z., and Dai, Z., Acta Biomater, 2012, vol. 8, p. 3372. https://doi.org/10.1016/j.actbio.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  31. Bixner, O. and Reimhult, E., J. Colloid Interface Sci., 2016, vol. 466, p. 62. https://doi.org/10.1016/j.jcis.2015.11.071

    Article  CAS  PubMed  Google Scholar 

  32. Pryazhnikov, D.V., Efanova, O.O., and Kubrakova, I.V., Mendeleev Commun., 2019, vol. 29, no. 2, p. 226. https://doi.org/10.1016/j.mencom.2019.03.038

    Article  CAS  Google Scholar 

  33. Lu, S., Li, X., Zhang, J., Peng, C., Shen, M., and Shi, X., Adv. Sci., 2018, vol. 5, no. 12, p. 1801612. https://doi.org/10.1002/advs.201801612

    Article  CAS  Google Scholar 

  34. Xu, C. and Sun, S., Adv. Drug Delivery Rev., 2013, vol. 65, p. 732. https://doi.org/10.1016/j.addr.2012.10.008

    Article  CAS  Google Scholar 

  35. Rios, A. and Zougagh, M., TrAC, Trends Anal. Chem., 2016, vol. 84 A, p. 72. https://doi.org/10.1016/j.trac.2016.03.001

  36. Alshehri, S., Imam, S.S., Rizwanullah, M., Akhter, S., Mahdi, W., Kazi, M., and Ahmad, J., Pharmaceutics, 2021, vol. 13, p. 24. https://doi.org/10.3390/pharmaceutics13010024

    Article  CAS  Google Scholar 

  37. Timerbaev, A.R., Analyst, 2020, vol. 145, p. 1103. https://doi.org/10.1039/C9AN01920K

    Article  CAS  PubMed  Google Scholar 

  38. Ke, P.C., Lin, S., Parak, W.J., Davis, T.P., and Caruso, F., Decade of the protein corona, ACS Nano, 2017, vol, vol. 11, no. 12, p. 11773. https://doi.org/10.1021/acsnano.7b08008

  39. Kulikova, G.A. and Parfenyuk, E.V., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 5, p. 546.

    Article  CAS  Google Scholar 

  40. Winzen, S., Schoettler, S., Baier, G., Rosenauer, C., Mailaender, V., Landfester, K., and Mohr, K., Nanoscale, 2015, vol, vol. 7, no. 7, p. 2992. https://doi.org/10.1039/c4nr05982d

  41. Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., and Dawson, K.A., Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 38, p. 14265. https://doi.org/10.1073/pnas.0805135105

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., Schlenk, F., Fischer, D., Kiouptsi, K., Reinhardt, C., Landfester, K., Schild, H., Maskos, M., Knauer, S.K., and Stauber, R.H., Nat. Nanotechnol., 2013, vol, vol. 8, no. 10, p. 772. https://doi.org/10.1038/nnano.2013.181

  43. Sikorski, J., Matczuk, M., Kaminska, A., Kruszewska, J., Trzaskowski, M., Timerbaev, A.R., and Jarosz, M., Int. J. Mol. Sci., 2022, vol. 23, p. 1088. https://doi.org/10.3390/ijms23031088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rabel, M., Warncke, P., Grüttner, C., Bergemann, C., Kurland, H.-D., Müller, R., Dugandzic, V., Thamm, J., Muller, R., Popp, J., Cialla-May, D., and Fischer, D., Nanomedicine, 2019, vol. 14, p. 1681. https://doi.org/10.2217/nnm-2018-0382

    Article  CAS  PubMed  Google Scholar 

  45. Gutiérrez, L., Romero, S., Da Silva, G.B., Costo, R., Vargas, M.D., Ronconi, C.M., Serna, C.J., Veintemillas-Verdaguer, S., and Del Puerto Morales, M., Biomed. Eng., 2015, vol. 60, p. 417. https://doi.org/10.1515/bmt-2015-0043

    Article  CAS  Google Scholar 

  46. Rojas, J.M., Gavilán, H., Del Dedo, V., Lorente-Sorolla, E., Sanz-Ortega, L., Da, SilvaG.B., Costo, R., Perez-Yagüe, S., Talelli, M., Marciello, M., Morales, M.P., Barber, D.F., and Gutiérrez, L., Acta Biomater., 2017, vol. 58, p. 181. https://doi.org/10.1016/j.actbio.2017.05.047

    Article  CAS  PubMed  Google Scholar 

  47. Yurenya, A., Nikitin, A., Garanina, A., Gabbasov, R., Polikarpov, M., Cherepanov, V., Chuev, M., Majouga, A., and Panchenko, V., J. Magn. Magn. Mater., 2019, vol. 474, p. 337. https://doi.org/10.1016/j.jmmm.2018.11.040

    Article  CAS  Google Scholar 

  48. Mazuel, F., Espinosa, A., Luciani, N., Reffay, M., Le Borgne, R., Motte, L., Desboeufs, K., Michel, A., Pellegrino, T., Lalatonne, Y., and Wilhelm, C., ACS Nano, 2016, vol. 10, p. 7627. https://doi.org/10.1021/acsnano.6b02876

    Article  CAS  PubMed  Google Scholar 

  49. Sedykh, E.M., Dement’eva, O.V., Kartseva, M.E., Rumyantseva, T.B., Tunyan, A.A., Bannykh, L.N., Gromyak, I.N., and Rudoi, V.M., J. Anal. Chem., 2016, vol. 71, p. 62. https://doi.org/10.1134/S1061934816010123

    Article  CAS  Google Scholar 

  50. Kruszewska, J., Sikorski, J., Samsonowicz-Gorski, J., and Matczuk, M., Anal. Bioanal. Chem., 2020, vol. 412, p. 8145. https://doi.org/10.1007/s00216-020-02948-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi, M.M.F., Douglas, A.D., and Murray, R.W., Anal. Chem., 2006, vol. 78, no. 8, p. 2779. https://doi.org/10.1021/ac052167m

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Y., Shuang, S., Dong, C., Lo, C.K., Paau, M.C., and Choi, M.M.F., Anal. Chem., 2009, vol. 81, no. 4, p. 1676. https://doi.org/10.1021/ac8026349

    Article  CAS  PubMed  Google Scholar 

  53. Pace, H.E., Rogers, N.J., Jarolimek, C., Coleman, V.A., Higgins, C.P., and Ranville, J.F., Anal. Chem., 2012, vol. 84, p. 4633. https://doi.org/10.1021/ac201952t

    Article  CAS  Google Scholar 

  54. Levy, M., Luciani, N., Alloyeau, D., Elgrabli, D., Deveaux, V., Pechoux, C., Chat, S., Wang, G., Vats, N., Gendron, F., Factor, C., Lotersztajn, S., Luciani, A., Wilhelm, C., and Gazeau, F., Biomaterials, 2011, vol. 32, p. 3988. https://doi.org/10.1016/j.biomaterials.2011.02.031

    Article  CAS  PubMed  Google Scholar 

  55. Montes-Bayón, M., Corte-Rodriguez, M., Álvarez-Fernández García, R., and Severo Fagundes, J., in Comprehensive Analytical Chemistry, vol. 97, Amsterdam: Elsevier, 2022, p. 109. https://doi.org/10.1016/bs.coac.2022.03.002

    Book  Google Scholar 

  56. Ivask, A., Mitchell, A.J., Malysheva, A., Voelcker, N.H., and Lombi, E., Nanomed. Nanobiotechnol., 2018, vol. 10, p. e1486. https://doi.org/10.1002/wnan.1486

    Article  Google Scholar 

  57. Yu, X., He, M., Chen, B., and Hu, B., Anal. Chim. Acta, 2020, vol. 1137, p. 191. https://doi.org/10.1016/j.aca.2020.07.041

    Article  CAS  PubMed  Google Scholar 

  58. Sun, Q.-X., Wei, X., Zhang, S.-Q., Chen, M.-L., Yang, T., and Wang, J.-H., Anal. Chim. Acta, 2019, vol. 1066, p. 13. https://doi.org/10.1016/j.aca.2019.03.062

    Article  CAS  PubMed  Google Scholar 

  59. García, R.A.-F., Corte-Rodríguez, M., Macke, M., LeBlanc, K., Mester, Z., Montes-Bayon, M., and Bettmer, J., Analyst, 2020, vol. 145, p. 1457. https://doi.org/10.1039/c9an01565e

    Article  CAS  Google Scholar 

  60. Cao, Y., Feng, J., Tang, L., Yu, C., Mo, G., and Deng, B., Talanta, 2020, vol. 206, p. 120174. https://doi.org/10.1016/j.talanta.2019.120174

    Article  CAS  PubMed  Google Scholar 

  61. Amor, M., Tharaud, M., Gelabert, A., and Komeili, A., Environ. Microbiol., 2020, vol. 22, p. 823. https://doi.org/10.1111/1462-2920.14708

    Article  CAS  PubMed  Google Scholar 

  62. Wang, H., Wang, M., Wang, B., Zheng, L., Chen, H., Chai, Z., and Feng, W., Anal. Bioanal. Chem., 2017, vol. 409, p. 1415. https://doi.org/10.1007/s00216-016-0075-y

    Article  CAS  PubMed  Google Scholar 

  63. Liu, T., Bolea-Fernandez, E., Mangodt, C., De Wever, O., and Vanhaecke, F., Anal. Chim. Acta, 2021, vol. 1177, p. 338797. https://doi.org/10.1016/j.aca.2021.338797

    Article  CAS  PubMed  Google Scholar 

  64. Hieftje, G.M., Spectrochim. Acta, Part B, 2006, vol. 61, p. 597. https://doi.org/10.1016/j.sab.2006.05.006

    Article  CAS  Google Scholar 

  65. Degueldre, C. and Favarger, P.-Y., Colloids Surf., A, 2003, vol. 217, p. 137. https://doi.org/10.1016/S0927-7757(02)00568-X

    Article  CAS  Google Scholar 

  66. Laborda, F., Bolea, E., and Jiménez-Lamana, J., Trends Environ. Anal. Chem., 2016, vol. 9, p. 15.

    CAS  Google Scholar 

  67. Bolea, E., Jimenez, M.S., Perez-Arantegui, J., Vidal, J.C., Bakir, M., Ben-Jeddou, K., Gimenez-Ingalaturre, A.C., Ojeda, D., Trujilloa, C., and Laborda, F., Anal. Methods, 2021, vol. 13, p. 2742. https://doi.org/10.1039/d1ay00761k

    Article  CAS  PubMed  Google Scholar 

  68. Pace, H.E., Rogers, N.J., Jarolimek, C., Coleman, V.A., Higgins, C.P., and Ranville, J.F., Anal. Chem., 2011, vol. 83, p. 9361. https://doi.org/10.1021/ac201952t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Laborda, F., Bolea, E., Cepriá, G., Gómez, M.T., Jimenez, M.S., Pérez Arantegui, J., and Castillo, J.R., Anal. Chim. Acta, 2016, vol. 904, p. 10. https://doi.org/10.1016/j.aca.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  70. Laborda, F., Gimenez-Ingalaturre, A.C., and Bolea, E., in Comprehensive Analytical Chemistry, vol. 93, Amsterdam: Elsevier, 2021, p. 35. https://doi.org/10.1016/bs.coac.2021.02.012

    Book  Google Scholar 

  71. Abad-Alvaro, I., Pena-Vazquez, E., Bolea, E., Bermejo-Barera, P., Castillo, J.R., and Laborda, F., Anal. Bioanal. Chem., 2016, vol. 408, p. 5089. https://doi.org/10.1007/s00216-016-9515-y

    Article  CAS  PubMed  Google Scholar 

  72. Laborda, F., Gimenez-Ingalaturre, A.C., Bolea, E., and Castillo, J.R., Spectrochim. Acta, Part B, 2020, vol. 169, p. 105883. https://doi.org/10.1016/j.sab.2020.105883

    Article  CAS  Google Scholar 

  73. Lee, S., Bi, X., Reed, R.B., Ranville, J.F., Herckes, P., and Westerhoff, P., Environ. Sci. Technol., 2014, vol. 48, p. 10291. https://doi.org/10.1021/es502422v

    Article  CAS  PubMed  Google Scholar 

  74. Vidmar, J., Oprčkal, P., Milačič, R., Mladenovič, A., and Ščančar, J., Sci. Total Environ., 2018, vol. 634, p. 1259. https://doi.org/10.1016/j.scitotenv.2018.04.081

    Article  CAS  PubMed  Google Scholar 

  75. Laycock, A., Clark, N.J., Clough, R., Smith, R., and Handy, R.D., Environ. Sci.: Nano, 2022, vol. 9, p. 420. https://doi.org/10.1039/d1en00680k

    Article  CAS  PubMed  Google Scholar 

  76. Laborda, F., Jimenez-Lamana, J., Bolea, E., and Castillo, J.R., J. Anal. At. Spectrom., 2013, vol. 28, p. 1220. https://doi.org/10.1039/C3JA50100K

    Article  CAS  Google Scholar 

  77. Mozhayeva, D. and Engelhard, C., J. Anal. At. Spectrom., 2020, vol. 35, p. 1740. https://doi.org/10.1039/C9JA00206E

    Article  CAS  Google Scholar 

  78. ISO/TS19590:2017: Nanotechnologies—Size Distribution and Concentration of Inorganic Nanoparticles in Aqueous Media via Single Particle Inductively Coupled Plasma Mass Spectrometry, 2017.

  79. Nelson, J., Yamanaka, M., Lopez-Linares, F., Poirier, L., and Rogel, E., Energy Fuels, 2017, vol. 31, p. 11971. https://doi.org/10.1021/ACS.ENERGYFUELS.7B02380

    Article  CAS  Google Scholar 

  80. Rua-Ibarza, A., Bolea-Fernandez, E., Pozo, G., Dominguez-Benetton, X., Vanhaecke, F., and Tirez, K., J. Anal. At. Spectrom., 2020, vol. 35, p. 2023. https://doi.org/10.1039/D0JA00183J

    Article  Google Scholar 

  81. Temerdashev, Z.A., Galitskaya, O.A., Bol’shov, M.A., and Romanovskii, K.A., J. Anal. Chem., 2022, vol. 77, p. 53. https://doi.org/10.1134/S1061934822010130

    Article  CAS  Google Scholar 

  82. Venkatesan, K., Rodríguez, B.T., Marcotte, A.R., Bi, X., Schoepf, J., Ranville, J.F., Herckes, P., and Westerhoff, P., Environ. Sci.: Water Res. Technol., 2018, vol. 4, p. 1923. https://doi.org/10.1039/C8EW00478A

    Article  CAS  Google Scholar 

  83. Nwoko, K.C., Raab, A., Cheyne, L., Dawson, D., Krupp, E., and Feldmann, J., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2019, vol. 1124, p. 356. https://doi.org/10.1016/j.jchromb.2019.06.029

    Article  CAS  Google Scholar 

  84. Sun, Y., Liu, N., Wang, Y., Yin, Y., Qu, G., Shi, J., Song, M., Hu, L., He, B., Liu, G., Cai, Y., Liang, Y., and Jiang, G., Anal. Chem., 2020, vol. 92, p. 14872. https://doi.org/10.1021/acs.analchem.0c02285

    Article  CAS  PubMed  Google Scholar 

  85. Bocca, B., Battistini, B., and Petrucci, F., Talanta, 2020, vol. 220, p. 121404. https://doi.org/10.1016/j.talanta.2020.121404

    Article  CAS  PubMed  Google Scholar 

  86. Van der Zande, M., Vandebriel, R.J., Van Doren, E., Kramer, E., Herrera, RiveraZ., Serrano-Rojero, C.S., Gremmer, E.R., Mast, J., Peters, R.J.B., Hol-lman, P.C.H., Hendriksen, P.J.M., Marvin, H.J.P., Peijnenburg, A.A.C.M., and Bouwmeester, H., ACS Nano, 2012, vol. 6, p. 7427. https://doi.org/10.1021/nn302649p

    Article  CAS  PubMed  Google Scholar 

  87. Logozzi, M., Mizzoni, D., Boccb, B., Di Raimo, R., Petrucci, F., Caimi, S., Alimonti, A., Falchi, M., Cappello, F., Campanella, C., Bavisotto, C.C., David, S., Bucchieri, F., Angelini, D.F., Battistini, L., and Fais, S., Eur. J. Pharm. Biopharm., 2019, vol. 137, p. 23. https://doi.org/10.1016/j.ejpb.2019.02.014

    Article  CAS  PubMed  Google Scholar 

  88. García, R.Á.-F., Fernández-Iglesias, N., López-Chaves, C., Sánchez-González, C., Llopis, J., Montes-Bayón, M., and Bettmer, J., J. Trace Elem. Med. Biol., 2019, vol. 55, p. 1. https://doi.org/10.1016/j.jtemb.2019.05.006

    Article  CAS  Google Scholar 

  89. Ebeling, W., Hennrich, N., Klockow, M., Metz, H., Orth, H.D., and Lang, H., Eur. J. Biochem., 1974, vol. 47, p. 91. https://doi.org/10.1111/j.1432-1033.1974.tb03671.x

    Article  CAS  PubMed  Google Scholar 

  90. Bajorath, J., Hinrichs, W., and Saenger, W., Eur. J. Biochem., 1988, vol. 176, p. 441. https://doi.org/10.1111/j.1432-1033.1988.tb14301.x

    Article  CAS  PubMed  Google Scholar 

  91. Loeschner, K., Navratilova, J., Kobler, C., Molhave, K., Wagner, S., von der Kammer, F., and Larsen, E.H., Anal. Bioanal. Chem., 2013, vol. 405, p. 8185. https://doi.org/10.1007/s00216-013-7228-z

    Article  CAS  PubMed  Google Scholar 

  92. Johnson, M.E., Hanna, S.K., Bustos, A.R.M., Sims, C.M., Elliott, L.C.C., Lingayat, A., Johnston, A.C., Nikoobakht, B., Elliott, J.T., Holbrook, R.D., Scoto, K.C.K., Murphy, K.E., Petersen, E.J., Yu, L.L., and Nelson, B.C., ACS Nano, 2017, vol. 11, p. 526. https://doi.org/10.1021/acsnano.6b06582

    Article  CAS  PubMed  Google Scholar 

  93. Noireaux, J., Grall, R., Hullo, M., Chevillard, S., Oster, C., Brun, E., Sicard-Roselli, C., Loeschner, K., and Fisicaro, P., Separations, 2019, vol. 6, p. 3. https://doi.org/10.3390/separations6010003

    Article  CAS  Google Scholar 

  94. Zhou, Q., Liu, L., Liu, N., He, B., Hu, L., and Wang, L., Ecotoxicol. Environ. Saf., 2020, vol. 198, p. 110670. https://doi.org/10.1016/j.ecoenv.2020.110670

    Article  CAS  PubMed  Google Scholar 

  95. Clark, N.J., Clough, R., Boyle, D., and Handy, R.D., Environ. Sci.: Nano, 2019, vol. 6, p. 3388. https://doi.org/10.1039/C9EN00547A

    Article  CAS  Google Scholar 

  96. Ishizaka, T., Nagano, K., Tasaki, I., Tao, H., Gao, J.Q., Harada, K., Hirata, K., Saito, S., Tsujino, H., Higashisaka, K., and Tsutsumi, Y., Nanoscale Res. Lett., 2019, vol. 14, p. 180. https://doi.org/10.1186/s11671-019-3016-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vidmar, J., Buerki-Thurnherr, T., and Loeschner, K., J. Anal. At. Spectrom., 2018, vol. 33, no. 5, p. 752. https://doi.org/10.1039/C7JA00402H

    Article  CAS  Google Scholar 

  98. Gao, Y., Zhang, R., Sun, H., Guo, Y., Chen, L., Shi, X., and Ge, G., Anal. Bioanal. Chem., 2022, vol. 414, p. 4401. https://doi.org/10.1007/s00216-022-03972-1

    Article  CAS  PubMed  Google Scholar 

  99. Fernandez-Trujillo, S., Rodríguez-Farinas, N., Jimenez-Moreno, M., and Martín-Doimeadios, R.D.C.R., Anal. Chim. Acta, 2021, vol. 1182, p. 338935. https://doi.org/10.1016/j.aca.2021.338935

    Article  CAS  PubMed  Google Scholar 

  100. Turiel-Fernandez, D., Gutiérrez-Romero, L., Corte-Rodríguez, M., Bettmer, J., and Montes-Bayón, M., Anal. Chim. Acta, 2021, vol. 1159, p. 338356. https://doi.org/10.1016/j.aca.2021.338356

    Article  CAS  PubMed  Google Scholar 

  101. Lores-Padín, A., Pereiro, R., and Fernández, B., in Recent Advances in Analytical Techniques, vol. 4, New York: Bentham, 2020, p. 1. https://doi.org/10.2174/9789811405112120040003

    Book  Google Scholar 

  102. Metarapi, D., Sala, M., Vogel-Mikus, K., Selih, V.S., and Van Elteren, J.T., Anal. Chem., 2019, vol. 91, p. 6200. https://doi.org/10.1021/acs.analchem.9b00853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Metarapi, D., van Elteren, J.T., Sala, M., Vogel-Mikus, K., Arcon, I., Selih, V.S., Kolar, M., and Hocevar, S.B., Environ. Sci.: Nano, 2021, vol. 8, p. 647.

    CAS  Google Scholar 

  104. Sotebier, C.A., Kutscher, D.J., Rottmann, L., Jakubowski, N., Panne, U., and Bettmer, J., J. Anal. At. Spectrom., 2016, vol. 31, p. 2045.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kubrakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubrakova, I.V., Grebneva-Balyuk, O.N., Pryazhnikov, D.V. et al. Methods of Atomic Spectroscopy in Studying Properties and the Behavior of Nanoscale Magnetic Materials in Biological Systems. J Anal Chem 78, 1306–1319 (2023). https://doi.org/10.1134/S106193482310012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482310012X

Keywords:

Navigation