Skip to main content
Log in

Highly Sensitive Determination of Carbamazepine and Oxcarbazepine and Identification of Their Degradation Products in Material Evidences and Human Cadaveric Liver by Gas Chromatography–Mass Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The work is devoted to the search for conditions for the sample preparation and determination of carbamazepine and oxcarbazepine and identification of the products of their metabolism and degradation in human liver (post mortem) and material evidences by gas chromatography–mass spectrometry. A QUECHERS approach was developed to the sample preparation of carbamazepine and oxcarbazepine. Amitriptyline was proposed as an internal standard. Degradation products of carbamazepine and oxcarbazepine were studied in model solutions upon alkaline and acid hydrolysis and oxidation; 14 metabolites and degradation products were identified. The main analytical characteristics of the developed procedure were determined. The limits of detection are 0.1 and 0.2 µg/g for carbamazepine and oxcarbazepine, respectively. The developed procedure complies with the Validation Guidelines of the Russian Center for Forensic Medical Examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Schmidt, D. and Elger, C.E., Epilepsy Behav., 2004, vol. 5, no. 5, p. 627.

    Article  PubMed  Google Scholar 

  2. Furst, S.M. and Uetrecht, J.P., Int. J. Immunopharmacol., 1995, vol. 17, no. 5, p. 445.

    Article  CAS  PubMed  Google Scholar 

  3. Wad, N., Guenat, C., and Krämer, G., Ther. Drug Monit., 1997, vol. 19, no. 3, p. 314.

    Article  CAS  PubMed  Google Scholar 

  4. Iida, A., Sasaki, E., Yano, A., Tsuneyama, K., Fukami, T., Nakajima, M., and Yokoi, T., Drug Metab. Dispos., 2015, vol. 43, no. 7, p. 958.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, W., Xia, T., Yun, Y., Li, M., Zhang, F., Gao, S., and Chen, W., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2019, vol. 1108, p. 17.

    Article  CAS  Google Scholar 

  6. Eichelbaum, M., Tomson, T., Tybring, G., and Bertilsson, L., Clin. Pharmacokinet., 1985, vol. 10, no. 1, p. 80.

    Article  CAS  PubMed  Google Scholar 

  7. Knowles, S.R., Uetrecht, J., and Shear, N.H., Lancet, 2000, vol. 356, no. 9241, p. 1587.

    Article  CAS  PubMed  Google Scholar 

  8. Brenton, H., Cociglio, M., Bressolle, F., Peyriere, H., Blayac, J., and Hillairebuys, D., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2005, vol. 828, nos. 1–2, p. 80.

    Article  Google Scholar 

  9. Csetenyi, J., Baker, K.M., Frigerio, A., and Morselli, P.L., J. Pharm. Pharmacol., 1973, vol. 25, no. 4, p. 340.

    Article  CAS  PubMed  Google Scholar 

  10. Pearce, R.E., Drug Metab. Dispos., 2002, vol. 30, no. 11, p. 1170.

    Article  CAS  PubMed  Google Scholar 

  11. Furst, S.M. and Uetrecht, J.P., Biochem. Pharmacol., 1993, vol. 45, no. 6, p. 1267.

    Article  CAS  PubMed  Google Scholar 

  12. Larkin, J., McKee, P., Forrest, G., Beastall, G., Park, B., Lowrie, J., and Brodie, M., Br. J. Clin. Pharmacol., 1991, vol. 31, no. 1, p. 65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flesch, G., Clin. Drug Invest., 2004, vol. 24, no. 4, p. 185.

    Article  CAS  Google Scholar 

  14. Schütz, H., Feldmann, K.F., Faigle, J.W., Kriemler, H.P., and Winkler, T., Xenobiotica, 1986, vol. 16, no. 8, p. 769.

    Article  PubMed  Google Scholar 

  15. Mandrioli, R., Albani, F., Casamenti, G., Sabbioni, C., and Raggi, M.A., J. Chromatogr. B: Biomed. Sci. Ap-pl., 2001, vol. 762, no. 2, p. 109.

    Article  CAS  Google Scholar 

  16. Deeb, S., McKeown, D.A., Torrance, H.J., Wylie, F.M., Logan, B.K., and Scott, K.S., J. Anal. Toxicol., 2014, vol. 38, no. 8, p. 485.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, W., Xia, T., Yun, Y., Li, M., Zhang, F., Gao, S., and Chen, W., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2019, vol. 1108, p. 17.

    Article  CAS  Google Scholar 

  18. Ferrari, E., Jr. and Caldas, E.D., Forensic Sci. Int., 2018, vol. 290, p. 318.

    Article  Google Scholar 

  19. Moffat, A.C., Osselton, M.D., Widdop, B., and Watts, J., Clarke’s Analysis of Drugs and Poisons in Pharmaceuticals, Body Fluids and Postmortem Material, London: Pharm. Press, 2011, 4th ed.

    Google Scholar 

  20. Levine, B., Phipps, R.J., Naso, C., Fahie, K., and Fowler, D., J. Anal. Toxicol., 2010, vol. 34, no. 8, p. 506.

    Article  CAS  PubMed  Google Scholar 

  21. Lionetto, L., Casolla, B., Cavallari, M., Tisei, P., Buttinelli, C., and Simmaco, M., Ther. Drug Monit., 2012, vol. 34, no. 1, p. 53.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, S., Xu, W., Subhani, Q., Yang, B., Chen, D., Zhu, Y., and Li, L., Talanta, 2012, vol. 101, p. 541.

    Article  CAS  PubMed  Google Scholar 

  23. Veiga, A., Dordio, A., Carvalho, A.J.P., Teixeira, D.M., and Teixeira, J.G., Anal. Chim. Acta, 2010, vol. 674, no. 2, p. 182.

    Article  CAS  PubMed  Google Scholar 

  24. Gibbons, S.E., Wang, C., and Ma, Y., Talanta, 2011, vol. 84, no. 4, p. 1163.

    Article  CAS  PubMed  Google Scholar 

  25. Cámara, M.S., Mastandrea, C., and Goicoechea, H.C., J. Biochem. Biophys. Methods, 2005, vol. 64, no. 3, p. 153.

    Article  PubMed  Google Scholar 

  26. Kalanur, S.S. and Seetharamappa, J., Anal. Lett., 2010, vol. 43, no. 4, p. 618.

    Article  CAS  Google Scholar 

  27. Burke, J.T. and Thénot, J.P., J. Chromatogr. B: Biomed. Sci. Appl., 1985, vol. 340, p. 199.

    Article  CAS  Google Scholar 

  28. Godolphin, W. and Thoma, J., Clin. Chem., 1978, vol. 24, no. 3, p. 483.

    Article  CAS  PubMed  Google Scholar 

  29. Kupferberg, H.J., J. Pharm. Sci., 1972, vol. 61, no. 2, p. 284.

    Article  CAS  PubMed  Google Scholar 

  30. Least, C.J., Johnson, G.F., and Solomon, H.M., Clin. Chem., 1975, vol. 21, no. 11, p. 1658.

    Article  CAS  PubMed  Google Scholar 

  31. Abraham, C.V. and Joslin, H.D., Clin. Chem., 1976, vol. 22, no. 6, p. 769.

    Article  CAS  PubMed  Google Scholar 

  32. Trager, W.E., Levy, R.H., Patel, I.H., and Neal, J.M., J. Pharmacol. Exp. Ther., 1978, vol. 206, no. 3, p. 607.

    PubMed  Google Scholar 

  33. Hallbach, J., Vogel, H., and Guder, W.G., Eur. J. Clin. Chem. Clin. Biochem., 1997, vol. 35, no. 10, p. 755.

    CAS  PubMed  Google Scholar 

  34. Speed, D.J., Dickson, S.J., Cairns, E.R., and Kim, N.D., J. Anal. Toxicol., 2000, vol. 24, no. 8, p. 685.

    Article  CAS  PubMed  Google Scholar 

  35. Inotsume, N., Higashi, A., Kinoshita, E., Matsuoka, T., and Nakano, M., J. Chromatogr. B: Biomed. Sci. Appl., 1986, vol. 383, no. 1, p. 166.

    Article  CAS  Google Scholar 

  36. Maurer, H.H., Arch. Toxicol., 1990, vol. 64, no. 7, p. 554.

    Article  CAS  PubMed  Google Scholar 

  37. Palmér, L., Bertilsson, L., Coliste, P., and Rawlins, M., Clin. Pharmacol. Ther., 1973, vol. 14, no. 5, p. 827.

    Article  PubMed  Google Scholar 

  38. Ferrari, E., Jr. and Caldas, E.D., Forensic Sci. Int., 2018, vol. 290, p. 318.

    Article  Google Scholar 

  39. Lewis, R.J., Angier, M.K., and Johnson, R.D., J. Anal. Toxicol., 2014, vol. 38, no. 8, p. 519.

    Article  CAS  PubMed  Google Scholar 

  40. von Unruh, G.E. and Paar, W.D., Biomed. Environ. Mass Spectrom., 1986, vol. 13, no. 12, p. 651.

    Article  CAS  PubMed  Google Scholar 

  41. Erarpat, S., Bodur, S., Fırat Ayyıldız, M., Tahir Günkara, Ö., Erulaş, F., Chorme, D.S., and Bakırdere, S., Biomed. Chromatogr., 2020, vol. 34, no. 10.

  42. Rani, S. and Malik, A.K., J. Sep. Sci., 2012, vol. 35, no. 21, p. 2970.

    Article  CAS  PubMed  Google Scholar 

  43. Barsegyan, S.S., Salomatin, E.M., Pleteneva, T.V., Maksimova, T.V., and Dolinkin, A.O., Metodicheskie rekomendatsii po validatsii analiticheskikh metodik, ispol’zuemykh v sudebno-khimicheskom i khimiko-toksikologicheskom analize biologicheskogo materiala (Guidelines on the Validation of Analytical Methods Used in Forensic Chemical and Chemical Toxicological Analysis of Biological Material), Moscow: Ross. Tsentr Sud.-Med. Ekspertizy, 2014.

Download references

ACKNOWLEDGMENTS

The study was carried out using the equipment of the Central Collective Use Center of Moscow State University “Technologies for Obtaining New Nanostructured Materials and Their Comprehensive Study”, acquired by Moscow State University under the program for updating the instrumentation base within the framework of the national project “Science” and the Development Program of Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pirogov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirogov, A.V., Gandlevskii, N.A., Vasil’eva, A.A. et al. Highly Sensitive Determination of Carbamazepine and Oxcarbazepine and Identification of Their Degradation Products in Material Evidences and Human Cadaveric Liver by Gas Chromatography–Mass Spectrometry. J Anal Chem 78, 783–793 (2023). https://doi.org/10.1134/S1061934823060096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823060096

Keywords:

Navigation