Skip to main content
Log in

In vitro Determination of Guanine, Adenine and Thymine Using a New Schiff base Transition Metal Complex as a Sensing Platform

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A novel chemically modified carbon paste electrode based on an inexpensive Ni(salph) complex, where salph is N,N'-bis(salicylidene)-4-methyl-o-phenylenediimine, was prepared for the simultaneous determination of guanine, adenine and thymine. The electrode was characterized by Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy dispersive X-ray analysis, thermogravimetric analysis and cyclic voltammetry. The proposed sensor enhanced the anodic peak currents of the nucleobases and could determine them sensitively in 0.1 M phosphate buffer solution (pH 7.0). Moreover, well-separated voltammetric peaks were obtained for guanine, adenine and thymine present in the analyte mixture. Under the optimum operating conditions, the peak currents for guanine, adenine and thymine increased linearly with the increase in the analyte mixture concentration in the ranges of 0.1 to 80, 0.1 to 50 and 15 to 150 μM, respectively. The detection limits for guanine, adenine and thymine were 0.03, 0.03 and 5 μM, respectively. This new approach has been successfully applied for the detection of the corresponding targets in a DNA sample with acceptable recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ensafi, A.A., Jafari-Asl, M., Rezaei, B., and Allafchian, A.R., Sens. Actuators, B, 2013, vol. 177, p. 634.

    Article  CAS  Google Scholar 

  2. Wang, Z., Liu, D., and Dong, S., Electroanalysis, 2000, vol. 12, p. 1419.

    Article  CAS  Google Scholar 

  3. Arvand, M. and Sayar Ardaki, M., Anal. Chim. Acta, 2017, vol. 986, p. 25.

    Article  CAS  PubMed  Google Scholar 

  4. Huang, K.J., Niu, D.J., Sun, J.Y., Han, C.H., Wu, Z.W., Li, Y.L., and Xiong, X.Q., Colloids Surf., B, 2011, vol. 82, p. 543.

    Article  CAS  Google Scholar 

  5. Huang, Y.F. and Chang, H.T., Anal. Chem., 2007, vol. 79, p. 4852.

    Article  CAS  PubMed  Google Scholar 

  6. Yeh, C.F. and Jiang, S.J., Analyst, 2002, vol. 127, p. 1324.

    Article  CAS  PubMed  Google Scholar 

  7. Sheng, R., Ni, F., and Cotton, T.M., Anal. Chem., 1991, vol. 63, p. 437.

    Article  CAS  Google Scholar 

  8. Ganzera, M., Vrabl, P., Wörle, E., Burgstaller, W., and Stuppner, H., Anal. Biochem., 2006, vol. 359, p. 132.

    Article  CAS  PubMed  Google Scholar 

  9. Erbao, L. and Bingchun, X., J. Pharm. Biomed. Anal., 2006, vol. 41, p. 649.

    Article  PubMed  Google Scholar 

  10. Gao, Y.S., Xu, J.K., Lu, L.M., Wu, L.P., Zhang, K.X., Nie, T., Zhu, X.F., and Wu, Y., Biosens. Bioelectron., 2014, vol. 62, p. 261.

    Article  CAS  PubMed  Google Scholar 

  11. Feng, L.J., Zhang, X.H., Liu, P., Xiong, H.Y., and Wang, S.F., Anal. Biochem., 2011, vol. 419, p. 71.

    Article  CAS  PubMed  Google Scholar 

  12. Arvand, M., Mazhabi, R.M., and Niazi, A., Electrochim. Acta, 2013, vol. 89, p. 669.

    Article  CAS  Google Scholar 

  13. Ghavami, R., Salimi, A., and Navaee, A., Biosens. Bioelectron., 2011, vol. 26, p. 3864.

    Article  CAS  PubMed  Google Scholar 

  14. Tu, X., Luo, X., Luo, S., Yan, L., Zhang, F., and Xie, Q., Microchim. Acta, 2010, vol. 169, p. 33.

    Article  CAS  Google Scholar 

  15. Tang, C., Yogeswaran, U., and Chen, S.M., Anal. Chim. Acta, 2009, vol. 636, p. 19.

    Article  CAS  PubMed  Google Scholar 

  16. Prathap, M.A., Srivastava, R., and Satpati, B., Electrochim. Acta, 2013, vol. 114, p. 285.

    Article  Google Scholar 

  17. Suarez, W.T., MarcolinoJr, L.H., and Fatibello-Filho, O., Microchem. J., 2006, vol. 82, p. 163.

    Google Scholar 

  18. Oni, J. and Nyokong, T., Anal. Chim. Acta, 2001, vol. 434, p. 9.

    Article  CAS  Google Scholar 

  19. Sadeghi, S., Motaharian, A., and Moghaddam, A.Z., Sens. Actuators, B, 2012, vol. 168, p. 336.

    Article  CAS  Google Scholar 

  20. Ghoreishi, S.M., Behpour, M., and Golestaneh, M., Food Chem., 2012, vol. 132, p. 637.

    Article  CAS  PubMed  Google Scholar 

  21. Fernández-Sánchez, C. and Costa-García, A., Electrochem. Commun., 2000, vol. 2, p. 776.

    Article  Google Scholar 

  22. Levin, O.V., Karushev, M.P., Timonov, A.M., Alekseeva, E.V., Zhang, S., and Malev, V.V., Electrochim. Acta, 2013, vol. 109, p. 153.

    Article  CAS  Google Scholar 

  23. Dahm, C.E. and Peters, D.G., J. Electroanal. Chem., 1996, vol. 406, p. 119.

    Article  Google Scholar 

  24. Timonov, A., Logvinov, S., Shkolnik, N., and Kogan, S., US Patent 6795293, 2004.

  25. Wang, W., Li, R., Hua, X., and Zhang, R., Electrochim. Acta, 2015, vol. 163, p. 48.

    Article  CAS  Google Scholar 

  26. Taraszewska, J. and Rosłonek, G., J. Electroanal. Chem., 1994, vol. 364, p. 209.

    Article  CAS  Google Scholar 

  27. Ureta-Zanartu, M.S., Alarcon, A., Munoz, G., and Gutierrez, C., Electrochim. Acta, 2007, vol. 52, p. 7857.

    Article  CAS  Google Scholar 

  28. Agboola, B. and Nyokong, T., Electrochim. Acta, 2007, vol. 52, p. 5039.

    Article  CAS  Google Scholar 

  29. Vereshchagin, A.A., Sizov, V.V., Verjuzhskij, M.S., Hrom, S.I., Volkov, A.I., Danilova, J.S., Novozhilova, M.V., Laaksonen, A., and Levin, O.V., Electrochim. Acta, 2016, vol. 211, p. 726.

    Article  CAS  Google Scholar 

  30. Teixeira, M.F. and Dadamos, T.R., Procedia Chem., 2009, vol. 1, p. 297.

    Article  CAS  Google Scholar 

  31. Kondratiev, V.V., Levin, O.V., and Malev, V.V., in Advances in Conducting Polymers Research, New York: Nova Science, 2014, p. 79.

    Google Scholar 

  32. Raoof, J.B., Golikand, A.N., and Baghayeri, M., J. Solid State Electrochem., 2010, vol. 14, p. 817.

    Article  CAS  Google Scholar 

  33. Gosden, C., Healy, K.P., and Pletcher, D., J. Chem. Soc., Dalton Trans., 1978, p. 972.

  34. Gosden, C. and Pletcher, D., J. Organomet. Chem., 1980, vol. 186, p. 401.

    Article  Google Scholar 

  35. Medeiros, M.J., Neves, C.S., Pereira, A.R., and Duñach, E., Electrochim. Acta, 2011, vol. 56, p. 4498.

    Article  CAS  Google Scholar 

  36. Vanalabhpatana, P. and Peters, D.G., J. Electrochem. Soc., 2005, vol. 152, p. E222.

    Article  CAS  Google Scholar 

  37. Chen, C., Li, X., Deng, F., and Li, J., RSC Adv., 2016, vol. 6, p. 79894.

    Article  CAS  Google Scholar 

  38. Martin, C.S., Machini, W.B.S., and Teixeira, M.F.S., RSC Adv., 2015, vol. 5, p. 39908.

    Article  CAS  Google Scholar 

  39. Sahay, R., Sundaramurthy, J., Kumar, P.S., Thavasi, V., Mhaisalkar, S.G., and Ramakrishna, S., J. Solid State Chem., 2012, vol. 186, p. 261.

    Article  CAS  Google Scholar 

  40. Hou, S. and Ding, M., Anal. Sci., 2010, vol. 26, p. 1111.

    Article  CAS  PubMed  Google Scholar 

  41. Laviron, E., J. Electroanal. Chem. Interfacial Electrochem., 1979, vol. 101, p. 19.

    Article  CAS  Google Scholar 

  42. Davidson, N., The Biochemistry of the Nucleic Acids, Norfolk, UK: Cox & Nyman, 1972.

    Google Scholar 

  43. Shen, Q. and Wang, X., J. Electroanal. Chem., 2009, vol. 632, p. 149.

    Article  CAS  Google Scholar 

  44. Ye, X., Du, Y., Duan, K., Lu, D., Wang, C., and Shi, X., Sens. Actuators, B, 2014, vol. 203, p. 271.

    Article  CAS  Google Scholar 

  45. Wang, P., Wu, H., Dai, Z., and Zou, X., Biosens. Bioelectron., 2011, vol. 26, p. 3339.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are thankful to the post-graduate office of Guilan University for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Giahi.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giahi, M., Ardaki, M.S., Vaghar, G. et al. In vitro Determination of Guanine, Adenine and Thymine Using a New Schiff base Transition Metal Complex as a Sensing Platform. J Anal Chem 78, 802–813 (2023). https://doi.org/10.1134/S1061934823060059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823060059

Keywords:

Navigation