Skip to main content
Log in

A Comparison of the Peak-to-Background Method and an Empirical Correction of the Results in the Energy-Dispersive Electron Probe Quantitative Analysis of Powder Materials

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Several algorithms for correcting the results of the quantitative electron probe elemental analysis of samples with rough surfaces and powder materials are compared. The effectiveness of the methods was estimated by the deviations of corrected weight fractions of elements from the results obtained for reference samples, i.e., polished plates of test materials. Using the most commonly used peak-to-background method, the intensity of continuous X-ray radiation was calculated by several methods. One method involved the analytical calculation of the bremsstrahlung generation function and the correction of the width and shape of the bremsstrahlung spectrum under the diagnostic lines of the elements based on the experimental spectra. The second, more rapid method was based on the direct simulation of the continuous radiation background by Monte Carlo methods in the NIST DTSA-II software environment. The last method of calculating the background of continuous radiation yielded smaller deviations of the results of quantitative analysis from the results obtained for reference samples. An empirical adjustment method was also tested. It was based on experimentally revealed patterns in the energy-dispersive spectra of powder samples. An analysis of the experimental data revealed an empirical dependence relating the parameters of characteristic photons to the value of accelerating voltage required to obtain the proper ratio of the weight concentrations of elements in the analysis of powdered materials. The proposed empirical method for correcting the results of analyses of powder samples based on the totality of the measurements performed is more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Armstrong, J.T. and Buseck, P.R., Anal. Chem., 1975, vol. 47, no. 13, p. 2178. https://doi.org/10.1021/ac60363a033

    Article  CAS  Google Scholar 

  2. Goldstein, J.I., Newbury, D.E., Michael, J.R., Ritchie, N.W.M., Scott, J.H.J., and Joy, D.C., Scanning Electron Microscopy and X-Ray Microanalysis, New York: Springer, 2018, 4th ed. https://doi.org/10.1007/978-1-4939-6676-9

  3. Newbury, D.E., Scanning, 2004, vol. 26, no. 3, p. 103. https://doi.org/10.1002/sca.4950260302

    Article  CAS  PubMed  Google Scholar 

  4. Small, J.A., J. Res. Natl. Inst. Stand. Technol., 2002, vol. 107, no. 6, p. 555. https://doi.org/10.6028/jres.107.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buseck, P.R., X-Ray Spectrom., 1985, vol. 14, no. 4, p. 172. https://doi.org/10.1002/xrs.1300140408

    Article  Google Scholar 

  6. Newbury, D.E. and Ritchie, N.W.M., Microsc. Microanal., 2013, vol. 19, no. 2, p. 1244. https://doi.org/10.1017/s1431927613008210

    Article  Google Scholar 

  7. Bayazid, S.M., Yuan, Y., and Gauvin, R., Scanning, 2021, vol. 7, p. 8070721. https://doi.org/10.1155/2021/8070721

    Article  Google Scholar 

  8. Hovington, P., Lagace, M., and Rodrigue, L., Microsc. Microanal., 2002, vol. 8, no. 2, p. 1472. https://doi.org/10.1017/S1431927602103990

    Article  Google Scholar 

  9. Newbury, D.E. and Ritchie, N.W.M., J. Mater. Sci., 2015, vol. 50, no. 2, p. 493. https://doi.org/10.1007/s10853-014-8685-2

    Article  CAS  PubMed  Google Scholar 

  10. Armstrong, J.T., in Electron Probe Quantification, Heinrich, K.J.F. and Newbury, D.E., Eds., New York: Plenum, 1991, p. 261. https://doi.org/10.1007/978-1-4899-2617-315

  11. Gauvin, R., Hovington, P., and Drouin, D., Scanning, 1995, vol. 17, no. 4, p. 202. https://doi.org/10.1002/sca.4950170401

    Article  CAS  Google Scholar 

  12. Storms, H.M., Janssens, K.H., Torok, S.B., and Van Grieken, R.E., X-Ray Spectrom., 1989, vol. 18, p. 45. https://doi.org/10.1002/xrs.13001820

    Article  CAS  Google Scholar 

  13. Sánchez-Gonzalo, D., Llovet, X., Graciani, R., and Salvat, F., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 304, p. 012015. https://doi.org/10.1088/1757-899x/304/1/012015

  14. Paoletti, A., Bruni, B.M., Gianfagna, A., Mazziotti-Tagliani, S., and Pacella, A., Microsc. Microanal., 2011, vol. 12, no. 5, p. 710. https://doi.org/10.1017/s1431927611000432

    Article  Google Scholar 

  15. Ritchie, N.W.M., Microsc. Microanal., 2010, vol. 16, no. 3, p. 248. https://doi.org/10.1017/s1431927610000243

    Article  CAS  PubMed  Google Scholar 

  16. Trincavelli, J.C. and Van Grieken, R.E., X-Ray Spectrom., 1994, vol. 23, p. 254. https://doi.org/10.1002/xrs.1300230605

    Article  CAS  Google Scholar 

  17. Labar, J.L. and Torok, S.B., X-Ray Spectrom., 1992, vol. 21, p. 183. https://doi.org/10.1002/xrs.1300210407

    Article  CAS  Google Scholar 

  18. Castellano, G., Osanb, J., and Trincavelli, J.C., Spectrochim. Acta, Part B, 2004, vol. 59, p. 313. https://doi.org/10.1016/j.sab.2003.11.008

    Article  CAS  Google Scholar 

  19. Limandri, S.P., Bonetto, R.D., Josa, V.G., Carreras, A.C., and Trincavelli, J.C., Spectrochim. Acta, Part B, 2012, vol. 77, p. 44. https://doi.org/10.1016/j.sab.2012.08.003

    Article  CAS  Google Scholar 

  20. Ding, Z.-J., Shimizu, R., and Obori, K., J. Appl. Phys., 1994, vol. 76, no. 11, p. 7180. https://doi.org/10.1063/1.357998

    Article  CAS  Google Scholar 

  21. Eggert, F., Microsc. Microanal., 2018, vol. 24, no. 1, p. 734. https://doi.org/10.1017/s1431927618004166

    Article  Google Scholar 

  22. Small, J.A., Leigh, S.D., Newbury, D.E., and Myklebust, R.L., J. Appl. Phys., 1987, vol. 61, no. 2, p. 459. https://doi.org/10.1063/1.338245

    Article  CAS  Google Scholar 

  23. Duncumb, P., Barkshire, I.R., and Statham, P.J.,Microsc. Microanal., 2001, vol. 7, no. 4, p. 341. https://doi.org/10.1007/s10005-001-0010-6

    Article  CAS  PubMed  Google Scholar 

  24. Riveros, J.A., Castellano, G., and Trincavelli, J.C., Microchim. Acta, 1992, vol. 12, p. 99. https://doi.org/10.1007/978-3-7091-6679-6-7

    Article  CAS  Google Scholar 

  25. Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., and Gauvin, R., Scanning, 2007, vol. 29, no. 3, p. 92. https://doi.org/10.1002/sca.20000

    Article  CAS  PubMed  Google Scholar 

  26. Drouin, D., Hovington, P., and Gauvin, R., Scanning, 1997, vol. 19, no. 1, p. 20. https://doi.org/10.1002/sca.4950190103

    Article  CAS  Google Scholar 

  27. Hovington, P., Drouin, D., and Gauvin, R., Scanning, 1997, vol. 19, no. 1, p. 1. https://doi.org/10.1002/sca.4950190101

    Article  CAS  Google Scholar 

  28. Hovington, P., Drouin, D., Gauvin, R., Joy, D.C., and Evans, N., Scanning, 1997, vol. 19, no. 1, p. 29. https://doi.org/10.1002/sca.4950190104

    Article  CAS  Google Scholar 

  29. Ritchie, N.W.M., Microsc. Microanal., 2009, vol. 15, no. 5, p. 454. https://doi.org/10.1007/s10853-014-8685-2

    Article  CAS  PubMed  Google Scholar 

  30. Newburry, D.E. and Ritchie, N.W.M., Microsc. Microanal., 2016, vol. 22, no. 3, p. 520. https://doi.org/10.1017/s1431927616000738

    Article  Google Scholar 

  31. Newburry, D.E. and Ritchie, N.W.M., Microsc. Microanal., 2015, vol. 21, no. 5, p. 1327. https://doi.org/10.1017/s1431927615014993

    Article  Google Scholar 

  32. Pukhov, D.E. and Lapteva, A.A., J. Anal. Chem., 2022, vol. 77, no. 9, p. 1162. https://doi.org/10.1134/s1061934822090118

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We used analytical equipment of the Facilities Sharing Center “Diagnostics of Micro- and Nano Structures.”

Funding

The work was performed within the framework of the state assignment to the Yaroslavl Branch of the Valiev Institute of Physics and Technology, Russian Academy of Sciences, from the RF Ministry of Science and Higher Education, topic no. FFNN-2022-0018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Pukhov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pukhov, D.E. A Comparison of the Peak-to-Background Method and an Empirical Correction of the Results in the Energy-Dispersive Electron Probe Quantitative Analysis of Powder Materials. J Anal Chem 78, 652–662 (2023). https://doi.org/10.1134/S1061934823050118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823050118

Keywords:

Navigation