Skip to main content
Log in

Gas-Chromatographic Identification of Unusual Unstable Products of the Partial Hydrolysis of Tetraethoxysilane

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Gas chromatographic analysis of a long-stored sample of tetraethoxysilane (tetraethyl orthosilicate) showed that it lacked the main component due to the hydrolysis of this compound by traces of water. Instead, ethanol and three other components with retention indices (RIs) of 537 ± 2 (no. 1), 608 ± 1 (no. 2, the most abundant component), and 727 ± 3 (no. 3) on a column with a HP-5 stationary phase were detected. These components are unstable, and they cannot be isolated preparatively; as a result, they have not been characterized previously. To identify them, the chemical properties of this sample were characterized, and the recurrent approximations of the RIs of the detected components and their correlation with the retention indices of structural analogs were considered. It was established that they were congeners of the initial tetraethoxysilane, namely, exotic products of its partial hydrolysis—triethoxysilanol (C2H5O)3SiOH, diethoxysilanediol (C2H5O)2Si(OH)2, and ethoxysilanetriol (C2H5O)Si(OH)3. In accordance with published data, some silanediols R2Si(OH)2 and silanetriols RSi(OH)3 are stable, especially, compounds containing substituents capable of conjugation with vacant d orbitals of silicon atoms. Among them are phenyl- (π–d conjugation systems) and alkoxy-substituted (p–d systems) silanediols and silanetriols. The identified products of partial hydrolysis of tetraethoxysilane belong to the latter type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Middleditch, B.S., J. Chromatogr. Libr., 1989, vol. 44, p. 1033.

    Google Scholar 

  2. Zenkevich, I.G., in “Recent” Advances in Gas “Chromatography,” London: IntechOpen, 2020, chapter 20. https://doi.org/10.5772/intechopen.94229

  3. The NIST Mass Spectral Library (NIST/EPA/NIH EI MS Library, 2020 Release). Software/Data Version; NIST Standard Reference Database no. 69, 2020. http://webbook.nist.gov. Accessed April 2022.

  4. Rama, S., Zhang, Y., Tchuenbou-Magala, F., Ding, Y., and Li, Y., Front. Chem. Sci. Eng., 2019, vol. 13, no. 4, p. 672. doi 1007/s11705-019-1856-6

  5. Ramamurthy, A.S. and Eglal, M.M., J. Nanomaterials, 2014, vol. 2014, 606534. https://doi.org/10.1155/2014/606534

    Article  CAS  Google Scholar 

  6. Arkles, B., Steinmetz, J.R., Zazyczny, J., and Mehta, P., in Silanes and Other Coupling Agents, Mittal, K.L., Ed., Utrecht: VSP, 1992, p. 91.

    Google Scholar 

  7. Braddock, D.C., Lickiss, P.D., Rowley, B.C., Pugh, B.C.R., Purnomo, T., Santhakumar, G., and Fussell, S.J., Org. Lett., 2018, vol. 20, p. 950.

    Article  CAS  PubMed  Google Scholar 

  8. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biological, O’Neil, M.J., Ed., Whitehouse Station: Merck, 2006.

  9. Lide, R.C., CRC Handbook of Chemistry and Physics, Boca Raton: CRC, 2007, 88th ed.

    Google Scholar 

  10. Taylor, J.H., J. Chromatogr. Sci., 1968, vol. 6, no. 11, p. 557. https://doi.org/10.1093/chromsci/6.11.557

    Article  CAS  Google Scholar 

  11. Ellren, O., Peetre, I.-B., and Smith, B.E.B., J. Chromatogr., 1974, vol. 88, p. 295. https://doi.org/10.1016/S0021-9673(00)83154-4

    Article  Google Scholar 

  12. Peetre, I.-B., J. Chromatogr., 1974, vol. 88, p. 311. https://doi.org/10.1016/S0021-9673(00)83155-6

    Article  CAS  Google Scholar 

  13. Kreshkov, A.P., Kirichenko, E.A., and Markov, B.A., Zh. Anal. Khim., 1975, vol. 30, no. 2, p. 345.

    CAS  Google Scholar 

  14. Ivanova, N.T. and Frangulyan, L.A., Gazokhromatograficheskii analiz nestabil’nykh i reaktsionnosposobnykh soedinenii (Gas Chromatographic Analysis of Unstable and Reactive Compounds), Moscow: Khimiya, 1979.

  15. Kovats’ retention index system, in Encyclopedia of Chromatography, Cazes, J., Ed., Boca Raton: CRC, 2010, vol. 2, p. 1304.

    Google Scholar 

  16. Stein, S.E., Babushok, V.I., Brown, R.L., and Linstrom, P.J., J. Chem. Inf. Model., 2007, vol. 47, p. 975. https://doi.org/10.1021/ci600548y

    Article  CAS  PubMed  Google Scholar 

  17. Lim, J., Ha, S.-W., and Lee, J.-K., Bull. Korean Chem. Soc., 2021, vol. 33, no. 3, p. 1067. https://doi.org/10.5012/bkcs.2012.33.3.1067

    Article  CAS  Google Scholar 

  18. Derivatization of analytes in chromatography: General aspects, in Encyclopedia of Chromatography, Cazes, J., Ed., Boca Raton: CRC, 2010, vol. 1, p. 562.

    Google Scholar 

  19. Compounds: Derivatization for GC analysis, in Encyclopedia of Chromatography, Cazes, J., Ed., Boca Raton: CRC, 2010, vol. 2, p. 1165.

    Google Scholar 

  20. Zenkevich, I.G. and Lukina, V.M., Anal. Kontrol’, 2019, vol. 23, no. 3, p. 410. doi https://doi.org/10.15826/analitika.2019.23.3.009

  21. Zenkevich, I.G., J. Chemometrics, 2009, vol. 23, p. 179. https://doi.org/10.1002/cem.1214

    Article  CAS  Google Scholar 

  22. Zenkevich, I.G., in Chemometrics in Chromatography, Komsta, L., Heyden, Y.V., and Sherma, J., Eds., New York: Taylor & Francis, 2017, p. 449.

    Google Scholar 

  23. Toyoda, T., Matsumoto, T., and Arakawa, T., US Patent 4338133, 1982.

  24. Kazakova, V.V., Gorbatsevich, O.B., Skvortsova, S.A., Demchenko, N.V., and Muzafarov, A.M., Russ. Chem. Bull., 2005, vol. 54, no. 5, p. 1350.

    Article  CAS  Google Scholar 

  25. Nobutami, K. and Masao, K., Bull. Chem. Soc. Jpn., 1954, vol. 27, no. 9, p. 605. https://doi.org/10.1246/bcsj.27.605

    Article  Google Scholar 

  26. Tyler, L., J. Am. Chem. Soc., 1955, vol. 77, no. 3, p. 770. https://doi.org/10.1021/ja1608a078

    Article  CAS  Google Scholar 

  27. Korkin, S.D., Buzin, M.I., Matukhina, E.V., Zherlitsyna, L.N., Auner, N., and Shchegolikhina, O.I., J. Organomet. Chem., 2003, vol. 686, nos. 1–2, p. 313. https://doi.org/10.1016/S0022-328X(03)00721-6

    Article  CAS  Google Scholar 

  28. Jha, S.K., Marina, N., Liu, C., and Hayashi, K., Anal. Methods, 2015, no. 7, p. 9549. https://doi.org/10.1039/C4AY02457A

  29. Pratana, R.I., Yuniar, I., Hamdani, H., and Rostini, I., Int. J. Fish. Aquat. Res., 2019, vol. 4, no. 1, p. 25.

    Google Scholar 

  30. Stefanikova, J., Arvay, J., Miskeje, M., and Kacaniova, M., Slovak J. Food Sci., 2020, vol. 14, p. 767. https://doi.org/10.5219/1300

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experimental data of this work were obtained at the Resource Center “Methods for Analyzing the Composition of Substances” of the Science Park at St. Petersburg State University. We are grateful to the employees of this center for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Zenkevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkevich, I.G., Baranov, D.A. Gas-Chromatographic Identification of Unusual Unstable Products of the Partial Hydrolysis of Tetraethoxysilane. J Anal Chem 78, 82–90 (2023). https://doi.org/10.1134/S1061934823010148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823010148

Keywords:

Navigation