Skip to main content
Log in

A Green Chemosensing Approach for Direct and Liquid-liquid Extractive Spectrophotometric Determination of Platinum

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, a highly selective colorimetric chemosensing behavior of 4-(2'-furalideneimino)-3-methyl-5-mercapto-1,2,4-triazole (FIMMT) was used for the determination of platinum ions. The developed method is simple, cheap, and rapid. It obeys the principle of green chemistry since n-butanol used as an extraction solvent for platinum determination in aqueous solutions was further recycled and did not release toxic wastes. Platinum forms a red-colored soluble complex with FIMMT at pH 5.4 on heating. Platinum(II)−FIMMT complex was instantly extracted into n-butanol. The complex absorbance in aqueous and n-butanol solutions was found at λmax of 510 nm. The complex was stable for more than 24 h in the presence of other ions with the extinction coefficient of 11686 L/mol ⋅ cm and Sandell’s sensitivity of 0.017 µg/cm2. The effect of pH, excess of reagent, and foreign ions on the determination of platinum as well as the influence of heating time, stability, and solubility of the complex in various solvents were studied. The system obeyed Beer’s law up to 17.5 µg/mL, and the optimum range was evaluated by Ringbom method. The developed method showed excellent linearity and a correlation coefficient of 0.999. The method is precise, and it was applied for platinum determination in synthetic matrices, real samples such as cis-platin injection and platinum–rhodium thermocouple wire. The chromogenic reagent FIMMT selectively reacts with nickel, palladium, and platinum, which helps to separate them quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Rao, C.R.M. and Reddi, G.S., TrAC, Trends Anal. Chem., 2000, vol. 19, p. 565.

    Article  CAS  Google Scholar 

  2. Tomaz, M., Radiol. Oncol., 2019, vol. 53, p. 148.

    Article  CAS  Google Scholar 

  3. Domínguez, M., Anticó, E., Beyer, L., Aguirre, A., García-Granda, S., and Salvadó, V., Polyhedron, 2002, vol. 21, p. 1429.

    Article  Google Scholar 

  4. Xin, Z., Yuanqing, Z., Huang, Z., Hu, Q., Chen, J., and Yang, G., Microchim. Acta, 2006, vol. 153, p. 187.

    Article  CAS  Google Scholar 

  5. Patel, K.S., Shrivash, K., Sharma, P.C., Pandey, M., and Hoffmann, P., Anal. Lett., 2004, vol. 37, p. 1953.

    Article  CAS  Google Scholar 

  6. Prakash, K.M.M.S., Prabhakar, L.D., and Reddy, D.V., Anal. Lett., 1987, vol. 20, p. 959.

    Article  CAS  Google Scholar 

  7. Anilanmert, B., Yalçin, G., Ariöz, F., and Dölen, E., Anal. Lett., 2001, vol. 34, p. 113.

    Article  CAS  Google Scholar 

  8. Crisponi, G., Cristiani, F., Nurchi, V.M., Pinna, R., Pivetta, T., and José Tapia Estévez, M., Polyhedron, 2000, vol. 19, p. 2435.

    Article  CAS  Google Scholar 

  9. Grigoryan, K.R., Aznauryan, M.G., Bagramyan, N.A., Gevorkyan, L.G., and Markaryan, S.A., J. Appl. Spectrosc., 2008, vol. 75, p. 593.

    Article  CAS  Google Scholar 

  10. Zhao, J. and Xu, Q., Talanta, 1991, vol. 38, p. 909.

    Article  CAS  PubMed  Google Scholar 

  11. Khuhawar, M.Y. and Arain, G.M., Talanta, 2005, vol. 66, p. 34.

    Article  CAS  PubMed  Google Scholar 

  12. Naik, P.P., Karthikeyan, J., and Nityananda Shetty, A., Environ. Monit. Assess., 2010, vol. 171, p. 639.

    Article  CAS  PubMed  Google Scholar 

  13. Ma, D., Li, Y., Ma, K., Li, J., Chen, J., Yan, J., and Wang, Y., Talanta, 2001, vol. 53, p. 937.

    Article  CAS  PubMed  Google Scholar 

  14. Toral, M.I., Richter, P., Lara, N., Escudero, M.T., and Soto, C., Anal. Lett., 2000, vol. 33, p. 93.

    Article  CAS  Google Scholar 

  15. Revanasiddappa, D. and Kumar, N.K., Anal. Bioanal. Chem., 2003, vol. 375, p. 319.

    Article  CAS  PubMed  Google Scholar 

  16. Sawant, S.S., Anal. Sci., 2010, vol. 26, p. 95.

    Article  CAS  PubMed  Google Scholar 

  17. Kundu, D. and Roy, S.K., Talanta, 1992, vol. 39, p. 415.

    Article  CAS  PubMed  Google Scholar 

  18. Yan-Jie, D., Ke, G., and Xing-Xin, G., Rare Met., 2004, vol. 23, p. 197.

    Google Scholar 

  19. Li, Z., Wang, J. and Xu, Q., Microchim. Acta, 1995, vol. 118, p. 43.

    Article  CAS  Google Scholar 

  20. Liu, B., Chen, C., and Zuo, B., Guang Pu Xue Yu Guang Pu Fen Xi, 1998, vol. 18, p. 492.

    CAS  PubMed  Google Scholar 

  21. Parent, M., Cornelis, R., Alt, F., Strijckmans, K., and Dams, R., Trace Elem. Res., 1994, vol. 43-45, p. 109.

    Article  CAS  Google Scholar 

  22. Pino, A., Alimonti, A., Conti, M.E., and Bocca, B., J. Environ. Monit., 2010, vol. 12, p. 1857.

    Article  CAS  PubMed  Google Scholar 

  23. Leśniewska, B.A., Godlewska-Zyłkiewicz, B., Bocca, B., Caimi, S., Caroli, S., and Hulanicki, A., Sci. Total Environ., 2004, vol. 321, p. 93.

    Article  PubMed  CAS  Google Scholar 

  24. Sutherland, R.A., Graham Pearson, D., and Ottley, C.J., Environ. Pollut., 2008, vol. 151, p. 503.

    Article  CAS  PubMed  Google Scholar 

  25. Whiteley, J.D. and Murray, F., Sci. Total Environ., 2005, vol. 341, p. 199.

    Article  CAS  PubMed  Google Scholar 

  26. Ek, K.H., Rauch, S., Morrison, G.M., and Lindberg, P., Sci. Total Environ., 2004, vols. 334–335, p. 149.

    Article  PubMed  CAS  Google Scholar 

  27. Tankersley, K.B., Dunning, N.P., Owen, L.A., Huff, W.D., Park, J.H., Kim, C., Lentz, D.L., and Sparks-Stokes, D., Sci. Rep., 2018, vol. 8, p. 11298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Li, H.Z., Zhai, D.T., Shou, C.Q., Zhao, S.Y., and Wei, Q., Guang Pu Xue Yu Guang Pu Fen Xi, 2006, vol. 26, p. 1724.

    PubMed  Google Scholar 

  29. Zhang, L., Zhao, L., Zhang, H., Liu, Q. and Jin, Q., Guang Pu Xue Yu Guang Pu Fen Xi, 2001, vol. 21, p. 62.

    PubMed  Google Scholar 

  30. Mladenova, E., Karadjova, I., and Tsalev, D.L., J. Sep. Sci., 2012, vol. 35, p. 1249.

    Article  CAS  PubMed  Google Scholar 

  31. Fan, Z.F., Du, L.M., and Jin, X.T., Guang Pu Xue Yu Guang Pu Fen Xi, 2003, vol. 23, p. 365.

    CAS  PubMed  Google Scholar 

  32. Su, Z.X., Pu, Q.S., Luo, X.Y., Chang, X.J., Zhan, G.Y., and Ren, F.Z., Talanta, 1995, vol. 42, p. 1127.

    Article  CAS  PubMed  Google Scholar 

  33. Jovanović, S., Petrović, B., Bugarčić, Ž.D., and Van Eldik, R., Dalton Trans., 2013, vol. 42, p. 8890.

    Article  PubMed  CAS  Google Scholar 

  34. Summa, N., Schiessl, W., Puchta, R., Van Eikema Hommes, N., and Van Eldik, R., Inorg. Chem., 2006, vol. 45, p. 2948.

    Article  CAS  PubMed  Google Scholar 

  35. Ertürk, H., Maigut, J., Puchta, R., and Van Eldik, R., Dalton Trans., 2008, vol. 45, p. 2759.

    Article  CAS  Google Scholar 

  36. Kamble, G.S., Kolekar, S.S., Han, S.H., and Anuse, M.A., Talanta, 2010, vol. 81, p. 1088.

    Article  CAS  PubMed  Google Scholar 

  37. Kamble, G.S., Gaikwad, A.P., Kokare, B.N., Kolekar, S.S., Han, S.H., and Anuse, M.A., Ind. Eng. Chem. Res., 2011, vol. 50, p. 11270.

    Article  CAS  Google Scholar 

  38. Kamble, G.S., Joshi, S.S., Kokare, A.N., Zanje, S.B., Kolekar, S.S., Ghule, A.V., Gaikwad, S.H., and Anuse, M.A., Sep. Sci. Technol., 2017, vol. 52, p. 2238.

    Article  CAS  Google Scholar 

  39. Barache, U.B., Shaikh, A.B., Lokhande, T.N., Kamble, G.S., Anuse, M.A., and Gaikwad, S.H., Spectrochim. Acta, Part A, 2018, vol. 189, p. 443.

    Article  CAS  Google Scholar 

  40. Barache, U.B., Shaikh, A.B., Deodware, S.A., Dhale, P.C., Kamble, G.S., Lokhande, T.N., and Gaikwad, S.H., Groundwater Sustainable Dev., 2019, vol. 9, 100221.

    Google Scholar 

  41. Barache, U.B., Shaikh, A.B., Lokhande, T.N., Anuse, M.A., Kamble, G.S., Gurame, V.M., and Gaikwad, S.H., J. Environ. Chem. Eng., 2017, vol. 5, p. 4828.

    Article  CAS  Google Scholar 

  42. Vogel, A.I., A Text Book of Quantitative Inorganic Analysis, London: Longmans, 1975, 3rd ed.

    Google Scholar 

  43. Gaikwad, S.H., Lokhande, T.N., and Anuse, M.A., Indian J. Chem. A, 2005, vol. 44, p. 1625.

    Google Scholar 

  44. Chipman, A., Yates, B.F., Canty, A.J., and Ariafard, A., Chem. Commun., 2018, vol. 54, p. 10491.

    Article  CAS  Google Scholar 

  45. Revathy, R.P.V., Indian J. Chem. A, 1990, vol. 29, p. 97.

    Google Scholar 

  46. Ringbom, A.Z., Z. Anal. Chem., 1939, vol. 115, p. 332.

    Article  CAS  Google Scholar 

  47. Beamish, F.E. Analysis of Noble Metals: Overview and Selected Methods, New York: Academic, 1977.

    Google Scholar 

  48. Marczenko, Z., Spectrophotometric Determination of Elements, Chichester: Ellis Horwood, 1976.

    Google Scholar 

  49. Kallmann, S., Talanta, 1987, vol. 34, p. 677.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors wish to thank Dr. B.Y. Yadav, Mr. N.N. Jagdale, Mr. P.T. Patil, Mr. A.B. Debadwar of Shri Shivaji Shikshan Prasarak Mandal, Barshi and Principal Mrs. B.D. Revadkar for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shashikant H. Gaikwad or Umesh B. Barache.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashikant H. Gaikwad, Barache, U.B., Kamble, G.S. et al. A Green Chemosensing Approach for Direct and Liquid-liquid Extractive Spectrophotometric Determination of Platinum. J Anal Chem 77, 1119–1130 (2022). https://doi.org/10.1134/S106193482209012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482209012X

Keywords:

Navigation