Skip to main content
Log in

Determination of Silver in Environmental Samples by High-resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry after Preconcentration on Bentonite

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

In this research, a preconcentration procedure was developed for the determination of silver in environmental samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS). During the preconcentration step, bentonite was used as a cheap solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction. The experimental parameters including pH of the sample solution, bentonite amount, and ultrasonication time as well as the main parameters of HR-CS GFAAS were investigated. The limit of detection was 0.01 µg/L, and the achieved preconcentration factor was 34. The relative standard deviation was 5%. The accuracy of this method was validated by analyses of NIST SRM 2709 (San Joaquin soil), NIST SRM 2711 (Montana soil), and NIST SRM 1643e (trace elements in water) certified reference materials. The proposed method was successfully applied for the determination of silver in soil and water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. The Silver Institute. http://www.silverinstitute.org. Accessed October 11, 2021.

  2. Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., and Ammar, R.A.A., Arab. J. Chem., 2010, vol. 3, p. 135.

    Article  CAS  Google Scholar 

  3. Kabata-Pendias, A. and Mukherjee, A.B., Trace Elements from Soil to Human, Heidelberg: Springer, 2007.

    Book  Google Scholar 

  4. Nordberg, G.F., Fowler, B.A., Nordberg, M., and Friberg, L., Handbook of the Toxicology of Metals, San Diego: Elsevier, 2007, 3rd ed.

    Google Scholar 

  5. Vandecasteele, C. and Block, C.B., Modern Methods for Trace Element Determination, Chichester: Wiley, 1993.

    Google Scholar 

  6. Jiang, X., Huang, K., Deng, D., Xia, H., Hou, X., and Zheng, Ch., TrAC, Trends Anal. Chem., 2012, vol. 39, p. 38.

    Article  CAS  Google Scholar 

  7. Atkovska, K., Bliznakovska, B., and Ruseska, G., J. Chem. Technol. Metall., 2016, vol. 51, p. 215.

    CAS  Google Scholar 

  8. Mohellebi, F. and Lakel, F., Desalin. Water Treat., 2016, vol. 57, p. 6051.

    Article  CAS  Google Scholar 

  9. Melichova, Z. and Hromada, L., Pol. J. Environ. Stud., 2013, vol. 22, p. 457.

    CAS  Google Scholar 

  10. Hong, S., Wen, Ch., He, J., Gan, F., and Ho, Y.S., J. Hazard. Mater., 2009, vol. 167, p. 630.

    Article  CAS  Google Scholar 

  11. Wang, S., Dong, Y., He, M., Chen, L., and Yu, X., Appl. Clay Sci., 2009, vol. 43, p. 164.

    Article  CAS  Google Scholar 

  12. Krawczyk, M., Akbari, S., Jeszka-Skowron, M., Pajootan, E., and Fard, F.S., J. Anal. At. Spectrom., 2016, vol. 31, p. 1505.

    Article  CAS  Google Scholar 

  13. Krawczyk-Coda, M., Spectrochim. Acta, Part B, 2017, vol. 129, p. 21.

    Article  CAS  Google Scholar 

  14. Ghiasvand, A.R., Moradi, F., Sharghi, H., and Hasaninejad, A.R., Anal. Sci., 2005, vol. 21, p. 387.

    Article  CAS  Google Scholar 

  15. Hartmann, G., Hutterera, C., and Schuster, M., J. Anal. At. Spectrom., 2013, vol. 28, p. 567.

    Article  CAS  Google Scholar 

  16. Fathabad, S.D. and Hasanvandi, S., Orient. J. Chem., 2012, vol. 28, p. 1311.

    Article  CAS  Google Scholar 

  17. Ghiasvand, A., Shadabi, S., Hajipour, S., and Nasirian, A., Anal. Bioanal. Chem. Res., 2015, vol. 2, p. 60.

    CAS  Google Scholar 

  18. Taher, M.A., Daliri, Z., and Fazelirad, H., Chin. Chem. Lett., 2014, vol. 25, p. 649.

    Article  CAS  Google Scholar 

  19. Ekinci, C. and Köklü, Ü., Spectrochim. Acta, Part B, 2000, vol. 55, p. 1491.

    Article  Google Scholar 

  20. Ghanei-Motlagh, M., Fayazi, M., Taher, M.A., and Jalalinejad, A., Chem. Eng. J., 2016, vol. 290, p. 53.

    Article  CAS  Google Scholar 

  21. Avila, A.K. and Curtius, A.J., J. Anal. At. Spectrom., 1994, vol. 9, p. 543.

    Article  CAS  Google Scholar 

  22. Medved, J., Matúš, P., Bujdoš, M., and Kubová, J., Chem. Pap., 2006, vol. 60, p. 27.

    Article  CAS  Google Scholar 

  23. Dadfarnia, S., Haji Shabani, A.M., and Gohari, M., Talanta, 2004, vol. 64, p. 682.

    Article  CAS  Google Scholar 

  24. Kurfürst, U., Solid Sample Analysis: Direct and Slurry Sampling Using GF-AAS and ETV-ICP, Heidelberg: Springer, 1998.

    Book  Google Scholar 

  25. Khan, S.A., Rehman, R., and Khan, M.A., Waste Manage., 1995, vol. 15, p. 271.

    Article  CAS  Google Scholar 

  26. Currie, L.A., Pure Appl. Chem., 1995, vol. 67, p. 1699.

    Article  CAS  Google Scholar 

  27. Rydberg, J., Solvent Extraction Principles and Practice, Revised and Expanded, Boca Raton: CRC Press, 2004, 2nd ed.

    Book  Google Scholar 

Download references

Funding

This work was supported the Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Krawczyk-Coda.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krawczyk-Coda, M. Determination of Silver in Environmental Samples by High-resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry after Preconcentration on Bentonite. J Anal Chem 77, 1155–1161 (2022). https://doi.org/10.1134/S1061934822090076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822090076

Keywords:

Navigation