Skip to main content

Advertisement

Log in

A Simple Spot Test Method with Digital Imaging for Chromium Speciation in Water Samples

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A simple and environmentally friendly method for the speciation of chromium based on a spot test obtained from digital images has been developed. Due to rapidity and simplicity of the method and portability of the used devices, the proposed method is suitable for in situ determination of chromium. The method employed a smartphone to capture digital images of Cr(VI)-1,5-diphenylcarbazide colored complex in microplate wells which were accommodated in a wooden box. A color digitizer app was used to extract RGB values from captured images. To obtain total chromium content in the sample, Cr(III) was oxidized to Cr(VI) with Ce(IV) prior to analysis. Under the optimum conditions, the calibration curves were linear over the concentration ranges of 20 to 250 and 30 to 250 μg/L with the detection limits of 5 and 7 μg/L and RSD values of 5.8 and 6.3% for Cr(VI) and Cr(III), respectively. The proposed method was successfully applied to the speciation of chromium in spiked water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Sall, M.L., Diaw, A.K.D., Gningue-Sall, D., Efremova Aaron, S., and Aaron J.-J., Environ. Sci. Pollut. Res. Int., 2020, vol. 27, no. 24, p. 29927. https://doi.org/10.1007/s11356-020-09354-3

    Article  CAS  PubMed  Google Scholar 

  2. Rimu, S.H. and Rahman, M.M., Int. J. Environ. Anal. Chem., 2020. https://doi.org/10.1080/03067319.2020.1817426

  3. Hamilton E.M., Young S.D., Bailey E.H., and Watts, M.J., Food Chem., 2018, vol. 250, p. 105. https://doi.org/10.1016/j.foodchem.2018.01.016

    Article  CAS  PubMed  Google Scholar 

  4. Elahi, F., Arain, M.B., Khan, W.A., Shah, N., and Kazi, T.G., Chem. Pap., 2021, vol. 75, p. 717. https://doi.org/10.1007/s11696-020-01337-5

    Article  CAS  Google Scholar 

  5. Fasihi, M., Rajabi, M., Barfi, B., and Sajjadi, S.M., J. Iran Chem. Soc., 2020, vol. 17, no. 7, p. 1705. https://doi.org/10.1007/s13738-020-01890-6

    Article  CAS  Google Scholar 

  6. López-García, I., Marín-Hernández, J.J., and Hernández-Córdoba, M., Sci. Rep., 2020, vol. 10, no. 1, p. 5268. https://doi.org/10.1038/s41598-020-62212-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mokgohloa, C.P., Thomas, M.S., Mokgalaka, N.S., and Ambushe, A.A., Int. J. Environ. Anal. Chem. 2020. https://doi.org/10.1080/03067319.2020.1811263

  8. Zhao, L.-y., Fei, J.-j., Lian, H.-z., Mao, L., and Cui, X.-B., Talanta, 2020, vol. 212, 120799. https://doi.org/10.1016/j.talanta.2020.120799

    Article  CAS  PubMed  Google Scholar 

  9. Pechancová, R., Gallo, J., Milde, D., and Pluháček, T., Talanta, 2020, vol. 218, 121150. https://doi.org/10.1016/j.talanta.2020.121150

    Article  CAS  PubMed  Google Scholar 

  10. Hilali, N., Mohammadi, H., Amine, A., Zine, N., and Errachid, A., Sensors, 2020, vol. 20, no. 18, p. 5153. https://doi.org/10.3390/s20185153

    Article  CAS  PubMed Central  Google Scholar 

  11. de Sá, I.P., de Souza, G.B., and de Araujo Nogueira, A.R., Microchem. J., 2021, vol. 160, 105618. https://doi.org/10.1016/j.microc.2020.105618

    Article  CAS  Google Scholar 

  12. Wang, J., Ahmad, W., Mehedi Hassan, M., Zareef, M., Viswadevarayalu, A., Arslan, M., Li, H., and Chen, Q., Food Chem., 2020, vol. 323, 126812. https://doi.org/10.1016/j.foodchem.2020.126812

    Article  CAS  PubMed  Google Scholar 

  13. Kazi, T.G., Memon, N.S., Shaikh, S.A., and Memon, S.S., Food Anal. Methods, 2019, vol. 12, no. 9, p. 1964. https://doi.org/10.1007/s12161-019-01544-1

    Article  Google Scholar 

  14. Sorouraddin, M.-H., Saadati, M., and Baneshat, H.K., Sens. Actuators, B, 2013, vol. 188, p. 73. https://doi.org/10.1016/j.snb.2013.06.096

    Article  CAS  Google Scholar 

  15. Pessoa, K.D., Suarez, W.T., dos Reis, M.F., de Oliveira Krambeck Franco, M., Moreira, R.P.L., and dos Santos, V.B., Spectrochim. Acta, Part A, 2017, vol. 185, p. 310. https://doi.org/10.1016/j.saa.2017.05.072

    Article  CAS  Google Scholar 

  16. Roda, A., Michelini, E., Zangheri, M., Di Fusco, M., Calabria, D., and Simoni, P., TrAC, Trends Anal. Chem., 2016, vol. 79, p. 317. https://doi.org/10.1016/j.trac.2015.10.019

    Article  CAS  Google Scholar 

  17. Khoshmaram, L., Saadati, M., and Karimi, A., Anal. Methods, 2020, vol. 12, no. 27, p. 3490. https://doi.org/10.1039/D0AY00706D

    Article  CAS  PubMed  Google Scholar 

  18. Mohamed, A.A., Ismail, E.M., and Ali, S., Microchem. J., 2020, vol. 157, 105054. https://doi.org/10.1016/j.microc.2020.105054

    Article  CAS  Google Scholar 

  19. Tabani, H., Dorabadi Zare, F., Alahmad, W., and Varanusupakul, P., Environ. Chem. Lett., 2020, vol. 18, no. 1, p. 187. https://doi.org/10.1007/s10311-019-00921-w

    Article  CAS  Google Scholar 

  20. Costa, V., Neiva, A., and Filho, E., Ecletica Quim. J., 2019, vol. 44, p. 62. https://doi.org/10.26850/1678-4618eqj.v44.1.62-74

    Article  CAS  Google Scholar 

  21. Alahmad, W., Varanusupakul, P., Kaneta, T., and Varanusupakul, P., Anal. Chim. Acta, 2019, vol. 1085, p. 98. https://doi.org/10.1016/j.aca.2019.08.002

    Article  CAS  PubMed  Google Scholar 

  22. Zarghampour, F., Yamini, Y., Baharfar, M., Javadian, G., and Faraji, M., Anal. Methods, 2020, vol. 12, no. 4, p. 483. https://doi.org/10.1039/C9AY02328C

    Article  CAS  Google Scholar 

  23. Zhai, H.-M., Zhou, T., Fang, F., and Wu, Z.-Y., Talanta, 2020, vol. 210, 120635. https://doi.org/10.1016/j.talanta.2019.120635

    Article  CAS  PubMed  Google Scholar 

  24. Kılıç, V., Alankus, G., Horzum, N., Mutlu, A.Y., Bayram, A., and Solmaz, M.E., ACS Omega, 2018, vol. 3, no. 5, p. 5531. https://doi.org/10.1021/acsomega.8b00625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Curbani, L., Gelinski, J.M.L.N., and Borges, E.M., Food Anal. Methods, 2020, vol. 13, no. 1, p. 249. https://doi.org/10.1007/s12161-019-01611-7

    Article  Google Scholar 

  26. Morosanova, M.A., Bashkatova, A.S., and Morosanova, E.I., Molecules, 2019, vol. 24, p.4407. https://doi.org/10.3390/molecules24234407

    Article  CAS  PubMed Central  Google Scholar 

  27. Jaikang P., Wangkarn S., Paengnakorn P., and Grudpan, K., Anal Sci., 2019, vol. 35, no. 4, p.421. https://doi.org/10.2116/analsci.18P497

    Article  CAS  PubMed  Google Scholar 

  28. de Oliveira, L.M.A., dos Santos, V.B., da Silva, E.K.N., Lopes, A.S., and Dantas-Filho, H.A., Talanta, 2020, vol. 206, 120219. https://doi.org/10.1016/j.talanta.2019.120219

    Article  CAS  PubMed  Google Scholar 

  29. Dragos, M. and Eugen, S., Sci. Bull.—Univ. “Politeh.” Bucharest, Ser. D, 2007, vol. 69, p. 77.s

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Saadati.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadati, M. A Simple Spot Test Method with Digital Imaging for Chromium Speciation in Water Samples. J Anal Chem 77, 704–710 (2022). https://doi.org/10.1134/S1061934822060089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822060089

Keywords: