Abstract
A method for the quantitative determination of mRNA of TEM-type serine beta-lactamases in bacteria resistant to beta-lactam antibiotics has been developed. The method includes several stages: the isolation of a total RNA fraction from a bacterial culture and the production of the beta-lactamase target DNA in sequential reverse transcription and polymerase chain reaction with the incorporation of a biotin label, and the hybridization of the target DNA on colorimetric biochips. Sample preparation conditions were optimized to increase the yield of the analyzed target DNA. A calibration curve for determining the amount of mRNA was constructed using a standard sample of beta-lactamase TEM-1 mRNA obtained by transcription in vitro. The advantage of using a standard sample corresponding to the full-length blaTEM-1 gene is that it passes through all the stages of analysis in parallel with the test samples with the same efficiency. The detection limit for TEM-1 beta-lactamase mRNA was 0.40 ± 0.05 amol/mL; the range of determined concentrations was from 1.0 amol/mL to 2000 fmol/mL, and the relative standard deviation did not exceed 12%. The duration of analysis after the production of a bacterial culture was about 7 h. The developed method can be used to study the conditions for the expression of beta-lactamase genes in bacteria resistant to antimicrobial drugs.








Similar content being viewed by others
REFERENCES
Eichenberger, E.M. and Thaden, J.T., Antibiotics, 2019, vol. 8, no. 2, p. 97.
World Health Organization. Antibiotic resistance. http://www.who.int/news-room/fact-sheets/detail/ antibiotic-resistance. Accessed July 1, 2021.
Mulani, M.S., Kamble, E.E., Kumkar, S.N., Tawre, M.S., and Pardesi, K.R., Front. Microbiol., 2019, vol. 10, p. 539.
Wright, G.D., Adv. Drug Delivery Rev., 2005, vol. 57, no. 10, p. 1451.
Egorov, A.M., Ulyashova, M.M., and Rubtsova, M.Y., Acta Nat., 2018, vol. 10, no. 4, p. 33.
Klein, E.Y., Van Boeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A., Goossens, H., and Laxminarayan, R., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 15, p. 3463.
King, D.T., Sobhanifar, S., and Strynadka, N.C.J., in Handbook of Antimicrobial Resistance, New York: Springer, 2017, p. 177.
Bush, K., Antimicrob. Agents Chemother., 2018, vol. 62, no. 10, e01076.
Edwards, T., Williams, C., Teethaisong, Y., Sealey, J., Sasaki, S., Hobbs, G., Cuevas, L.E., Evans, K., and Adams, E.R., Diagn. Microbiol. Infect. Dis., 2020, vol. 97, no. 4. 115076.
Dallenne, C., Da, CostaA., Decre, D., Favier, C., and Arlet, G., J. Antimicrob. Chemother., 2010, vol. 65, no. 3, p. 490.
Band, V.I. and Weiss, D.S., PLoS Pathog., 2019, vol. 15, no. 6, e1007726.
Andersson, D.I., Nicoloff, H., and Hjort, K., Nat. Rev. Microbiol., 2019, vol. 17, no. 8, p. 479.
Kjeldsen, T.S.B., Overgaard, M., Nielsen, S.S., Bortolaia, V., Jelsbak, L., Sommer, M., Guardabassi, L., and Olsen, J.E., J. Antimicrob. Chemother., 2015, vol. 70, no. 1, p. 62.
Maurya, A.P., Chanda, D.D., Bora, D., Talukdar, A.D., Chakravarty, A., and Bhattacharjee, A., Microb. Drug Resist., 2017, vol. 23, no. 2, p. 133.
Balabanian, G., Rose, M., Manning, N., Landman, D., and Quale, J., Microb. Drug Resist., 2018, vol. 24, no. 7, p. 877.
Lietard, J., Ameur, D., Damha, M.J., and Somoza, M.M., Angew Chem., Int. Ed. Engl., 2018, vol. 57, no. 46, p. 15257.
Wang, Y., Quc, J., Baa, Q., Donga, J., Zhang, L., Zhanga, H., Wue, A., Wangf, D., Xia, Z., Peng, D., Shuf, Y., Caoc, B., and Jiang, T., J. Virol. Methods, 2016, vol. 234, p. 178.
Bustin, S. and Nolan, T., Eur. J. Clin. Invest., 2017, vol. 47, no. 10, p. 756.
Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., and Friend, S.H., Cell, 2000, vol. 102, no. 1, p. 109.
Feng, J., Billal, D.S., Lupien, A., Racine, G., Winstall, E., Legare, D., and Ouellette, M., J. Proteome Res., 2011, vol. 10, no. 10, p. 4439.
Al-Rubaye, D.S., Henihan, G., Al-Abasly, A.K.A., Seagar, A.L., Al-Attraqchi, A.A.F., Schulze, H., Hashim, D.S., Kamil, J.K., Laurenson, I.F., and Bachmann, T.T., J. Med. Microbiol., 2016, vol. 65, no. 2, p. 114.
Moure, R., Tudó, G., Medina, R., Vicente, E., Caldito, J.M., Codina, M.G., Coll, P., Español, M., Gonzalez-Martin, J., Rey-Jurado, E., Salvadó, M., Tórtola, M.T., and Alcaide, F., Tuberculosis, 2013, vol. 93, no. 5, p. 508.
Naas, T., Cuzon, G., Truong, H., Bernabeu, S., and Nordmann, P., Antimicrob. Agents Chemother., 2010, vol. 54, no. 8, p. 3086.
Rubtsova, M.Yu., Ulyashova, M.M., Edelstein, M.V., and Egorov, A.M., Biosens. Bioelectron., 2010, vol. 26, no. 4, p. 1252.
Rubtsova, M.Yu., Ulyashova, M.M., Pobolelova, Yu.I., Presnova, G.V., and Egorov, A.M., Appl. Biochem. Microbiol., 2020, vol. 56, no. 2, p. 130.
Díaz-González, M., Pablo Salvador, J., Bonilla, D., Pilar Marco, M., Fernández-Sánchez, C., and Baldi, A., Biosens. Bioelectron., 2015, vol. 74, p. 698.
Palzkill, T., Front. Mol. Biosci., 2018, vol. 5, p. 1.
Pimenta, A.C., Fernandes, R., and Moreira, I.S., Mini Rev. Med. Chem., 2014, vol. 14, no. 2, p. 111.
Singh, N.S., Singhal, N., Kumar, M., and Virdi, J.S., Infect. Genet. Evol., 2021, vol. 90.
Hubbard, A.T.M., Mason, J., Roberts, P., Parry, C.M., Corless, C., van Aartsen, J., Howard, A., Bulgasim, I., Fraser, A.J., Adams, E.R., Roberts, A.P., and Edwards, T., Nat. Commun., 2020, vol. 11, no. 1, p. 4915.
Grigorenko, V.G., Andreeva, I.P., Rubtsova, M.Yu., Deygen, I.M., Antipin, R.L., Majouga, A.G., Egorov, A.M., Beshnova, D.A., Kallio, J., Hackenberg, C., and Lamzin, V.S., Biochimie, 2017, vol. 132, p. 45.
http://www.eucast.org/fileadmin/src/media/PDFs/ EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf. Accessed July 1, 2021.
Birnboim, H.C. and Doly, J., Nucleic Acid Res., 1979, vol. 7, p. 1513.
Greisen, K., Loeffelholz, M., Purohit, A., and Leong, D., J. Clin. Microbiol., 1994, vol. 32, no. 2, p. 335.
Nossal, N.G. and Heppel, L.A., J. Biol. Chem., 1966, vol. 241, no. 13, p. 3055.
Schenborn, E.T. and Mierendorf, R.C., Nucleic Acid Res., 1985, vol. 13, no. 17, p. 6223.
Verma, I.M., in The Enzymes, Boyer, P.D.N.Y, Ed.,
Pobolelova, Yu.I., Ulyashova, M.M., Rubtsova, M.Yu., and Egorov, A.M., Biochemistry (Moscow), 2014, vol. 79, no. 6, p. 566.
Livak, K.J. and Schmittgen, T.D., Methods, 2001, vol. 25, no. 4, p. 402.
Bustin, S.A., Biomol. Detect. Quantif., 2014, vol. 2, p. 35.
Bustin, S.A., Benes, V., Garson, J., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G., et al., Nat. Methods, 2013, vol. 10, p. 1063.
Kurbatov, L.K. and Zgoda, V.G., Biomed. Khim., 2016, vol. 62, no. 6, p. 715.
Bustin, S.A., J. Mol. Endocrinol., 2002, vol. 29, p. 23.
Funding
This work was supported by the Moscow State University (state contract no. АААА-А21-121011290089-4) and the Russian Foundation for Basic Research (grant no. 19-34-50071).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by V. Makhlyarchuk
Rights and permissions
About this article
Cite this article
Rubtsova, M.Y., Filippova, A.A., Fursova, N.K. et al. Quantitative Determination of Beta-Lactamase mRNA in the RNA Transcripts of Antibiotic-Resistant Bacteria Using Colorimetric Biochips. J Anal Chem 77, 519–530 (2022). https://doi.org/10.1134/S1061934822050124
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1061934822050124


