Skip to main content
Log in

Supercritical Fluid Chromatography–Mass-Spectrometry of Nitrogen-Containing Compounds: Atmospheric Pressure Ionization

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Supercritical fluid chromatography (SFC) in combination with mass spectrometry is a promising alternative to traditional chromatographic methods for the separation of polar nitrogen-containing compounds. The specificity of carbon dioxide-based mobile phases, used in this method, can affect the processes of the mass-spectrometric ionization of analytes and, as a consequence, the optimization strategy of the SFC–MS method. In this study, the effects of the composition of the CO2–methanol mobile phase, its flow rate, and also the parameters of the ion source (ESI capillary and corona discharge needle voltages, temperature) on the efficiency of ESI and APCI for a wide range of nitrogen-containing compounds from different classes were investigated. It was found that, because of the high basicity of the analytes under study, ESI in the positive ion mode is the preferred method of ionization, providing a multiple gain in efficiency compared to APCI for most analytes. An increase in the concentration of carbon dioxide in the mobile phase leads to a significant increase in the ESI efficiency and has a multidirectional effect on the ionization of analytes with different proton affinities under APCI conditions. An increase in APCI temperature leads to a decrease in the intensity of signals of protonated molecules and to the occurring of fragmentation processes regardless of the composition of the mobile phase for the vast majority of analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kwong, H.L., Yeung, H.L., Yeung, C.T., et al., Coord. Chem. Rev., 2007, vol. 251, nos. 17–20, p. 2188.

    Article  CAS  Google Scholar 

  2. Tahir, S., Badshah, A., and Hussain, R.A., Bioorg. Chem., 2015, vol. 59, p. 39.

    Article  CAS  Google Scholar 

  3. Alfonso, M., Tarraga, A., and Molina, P., Tetrahedron Lett., 2016, vol. 57, no. 29, p. 3053.

    Article  CAS  Google Scholar 

  4. Butnariu, R.M. and Mangalagiu, I.I., Bioorg. Med. Chem., 2009, vol. 17, no. 7, p. 2823.

    Article  CAS  Google Scholar 

  5. Sahu, J.K., Ganguly, S., and Kaushik, A., Chin. J. Nat. Med., 2013, vol. 11, no. 5, p. 456.

    CAS  PubMed  Google Scholar 

  6. Ansari, A., Ali, A., Asif, M., et al., New J. Chem., 2017, vol. 41, no. 1, p. 16.

    Article  CAS  Google Scholar 

  7. Chaudhari, K.S., Patel, H.M., and Surana, S.J., Indian J. Tuberc., 2017, vol. 64, no. 2, p. 119.

    Article  Google Scholar 

  8. Ahmad, S., Alam, O., Naim, M.J., et al., Eur. J. Med. Chem., 2018, vol. 157, p. 527.

    Article  CAS  Google Scholar 

  9. Edwards, T., J. Propul. Power, 2003, vol. 19, no. 6, p. 1089.

    Article  CAS  Google Scholar 

  10. Sharapova, A.V., Semenkov, I.N., Koroleva, T.V., et al., Sci. Total Environ., 2020, vol. 709, 136072.

    Article  CAS  Google Scholar 

  11. Reinhardt, C.F. and Dinman, B.D., Arch. Environ. Health, vol. 10, no. 6, p. 859.

  12. Kimball, R.F., Mutat. Res., 1977, vol. 39, no. 2, p. 111.

    Article  CAS  Google Scholar 

  13. Carlson, G.P., Toxicol. Lett., 1996, vol. 85, no. 3, p. 173.

    Article  CAS  Google Scholar 

  14. Padoley, K.V., Mudliar, S.N., and Pandey, R.A., Bioresour. Technol., 2008, vol. 99, no. 10, p. 4029.

    Article  CAS  Google Scholar 

  15. Kosyakov, D.S., Ul’yanovskii, N.V., Pikovskoi, I.I., et al., Chemosphere, 2019, vol. 228, p. 335.

    Article  CAS  Google Scholar 

  16. Plewa, M.J., Muellner, M.G., Richardson, S.D., et al., Environ. Sci. Technol., 2008, vol. 42, no. 3, p. 955.

    Article  CAS  Google Scholar 

  17. Richardson, S.D. and Ternes, T.A., Anal. Chem., 2018, vol. 90, no. 1, p. 398.

    Article  CAS  Google Scholar 

  18. Skipper, P.L., Kim, M.Y., Patty Sun, H.-L., et al, Carcinogenesis, 2010, vol. 31, no. 1, p. 50.

    Article  CAS  Google Scholar 

  19. Patel, M., Kumar, R., Kishor, K., et al., Chem. Rev., 2019, vol. 119, no. 6, p. 3510.

    Article  CAS  Google Scholar 

  20. Nagao, M., Yahagi, T., Seino, Y., et al., Mutat. Res., 1977, vol. 42, p. 335.

    Article  CAS  Google Scholar 

  21. Ul’yanovskii, N.V., Kosyakov, D.S., Popov, M.S., et al., J. Anal. Chem., 2020, vol. 75, no. 4. p. 510.

    Article  Google Scholar 

  22. Ul’yanovskii, N.V., Kosyakov, D.S., Pikovskoi, I.I., et al., Chromatographia, 2018, vol. 81, no. 6, p. 891.

    Article  Google Scholar 

  23. Caude, M. and Thiebaut, D., Practical Supercritical Fluid Chromatography and Extraction, Amsterdam: Harwood, 1999.

    Google Scholar 

  24. Ovchinnikov, D.V., Pokrovskiy, O.I., Kosyakov, D.S., et al., J. Chromatogr. A, 2020, vol. 1610, 460600.

    Article  CAS  Google Scholar 

  25. Duvala, J., Colasa, C., Pecher, V., et al., J. Chromatogr. A, 2017, vol. 1509, p. 132.

    Article  Google Scholar 

  26. Guo, W., Li, B., Chi, H., et al., Chromatographia, 2018, vol. 81, no. 9, p. 1257.

    Article  CAS  Google Scholar 

  27. Akbal, L. and Hopfgartner, G., Anal. Bioanal. Chem., 2020, vol. 412, no. 5, p. 6667.

    Article  CAS  Google Scholar 

  28. Novakova, L., Perrenoud, A.G., Francois, I., et al., Anal. Chim. Acta, 2014, vol. 824, p. 18.

    Article  CAS  Google Scholar 

  29. West, K.N., Wheeler, C., McCarney, J.P., et al., J. Phys. Chem. A, 2001, vol. 105, no. 16, p. 3947.

    Article  CAS  Google Scholar 

  30. West, C., Melin, J., Ansouri, H., et al., J. Chromatogr. A, 2017, vol. 1492, p. 136.

    Article  CAS  Google Scholar 

  31. Smith, R.L., Lee, S.B., Suzuki, S., et al., J. Chem. Eng. Data, 2002, vol. 47, no. 3, p. 608.

    Article  CAS  Google Scholar 

  32. Horvath, R., Horvai, G., Idrissi, A., et al., Phys. Chem. Chem. Phys., 2020, vol. 22, no. 20, p. 11652.

    Article  CAS  Google Scholar 

  33. Kolakowski, B.M., Grossert, J.S., and Ramaley, L., J. Am. Soc. Mass. Spectrom., 2004, vol. 15, no. 3, p. 311.

    Article  CAS  Google Scholar 

  34. Kolakowski, B.M., Grossert, J.S., and Ramaley, L., J. Am. Soc. Mass. Spectrom., 2004, vol. 15, no. 3, p. 301.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using instrumentation of the “Arktika” Core Facility Center of the Northern (Arctic) Federal University.

Funding

This work was supported by Russian Foundation for Basic Research, project no. 20-03-00416 and by the Ministry of Science and Higher Education of the Russian Federation (state assignment project no. 0793-2020-0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kosyakov.

Ethics declarations

The authors confirm no conflicts of interest.

Additional information

Translated by E. Rykova

ADDITIONAL INFORMATION

D.V. Ovchinnikov: ORCID ID 0000-0001-9313-2448

N.V. Ul’yanovskii: ORCID ID 0000-0003-4796-9313

D.I. Falev: ORCID ID 0000-0003-2923-2086

D.S. Kosyakov: ORCID ID 0000-0001-5223-6857

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, D.V., Ul’yanovskii, N.V., Falev, D.I. et al. Supercritical Fluid Chromatography–Mass-Spectrometry of Nitrogen-Containing Compounds: Atmospheric Pressure Ionization. J Anal Chem 76, 1624–1634 (2021). https://doi.org/10.1134/S1061934821140070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821140070

Keywords:

Navigation