Skip to main content
Log in

A New Approach to the Mass Spectrometric Analysis of Aqueous Electrolyte Solutions Using a Gas-Dynamic Interface with a Gas Jet at the Inlet of a Time-of-Flight Mass Spectrometer with Orthogonal Ion Injection

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We report the results of a study of the effect of a supersonic gas jet on the formation and extraction of analyzed ions from a liquid supplied through a capillary to an RF quadrupole connected to a time-of-flight mass spectrometer with orthogonal ion injection. The supersonic gas jet is formed inside a cylindrical channel and passes through an electron ionization ion source. The results confirm the prospects of using a supersonic jet to creating a high-performance ion source from a liquid supplied to the vacuum region under the pressure of ~10–4 Torr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Fenn, J.B., Mann, M., Meng, C.K., et al., Science, 1989, vol. 246, no. 4929, p. 464.

    Article  Google Scholar 

  2. Alexandrov, M.L., Gall, L.N., Krasnov, N.V., et al., Dokl. Akad. Nauk SSSR, 1984, vol. 277, no. 2, p. 379.

    Google Scholar 

  3. Yakovlev, B.S., Talrose, V.L., and Fenselau, C., Anal. Chem., 1994, vol. 66, no. 10, p. 1704.

    Article  CAS  Google Scholar 

  4. Balakin, A.A. and Buido, E.A., Tech. Phys., 2018, vol. 63, no. 8, p. 1125.

    Article  CAS  Google Scholar 

  5. Ninomia, S., Chen, L.C., Suzuki, H., et al., Rapid Commun. Mass Spectrom., 2012, vol. 26, no. 7, p. 863.

    Article  Google Scholar 

  6. Ninomia, S., Sakai, Y., and Chen, L.C., Mass Spectrom., 2018, vol. 7, no. 1, A0069.

    Article  Google Scholar 

  7. Anderson, J., Andres, R., and Fenn, J., in Molecular Beams, Ross, J., Ed., Advances in Chemical Physics, vol. 10, New York: Interscience, 1966.

  8. Campargue, R., J. Phys. Chem., 1984, vol. 88, p. 4466.

    Article  CAS  Google Scholar 

  9. Amirav, A. and Danon, A., US Patent 5055677, 1991.

  10. Amirav, A., US Patent 7518103, 2009.

  11. Amirav, A., Gordin, A., Poliak, M., et al., J. Mass Spectrom., 2008, vol. 43, no. 2, p. 141.

    Article  CAS  Google Scholar 

  12. Bazhenov, A.N., Bulovich, S.V., Gall, L.N., et al., J. Anal. Chem., 2011, vol. 66, p. 1392.

    Article  CAS  Google Scholar 

  13. Fomina, N.S., Kretinina, A.V., Masyukevich, S.V., et al., J. Anal. Chem., 2013, vol. 68, p. 1151.

    Article  CAS  Google Scholar 

  14. Raznikov, V.V., Ivashin, S.V., Zelenov, V.V., et al., Izv. Ross. Akad. Nauk, Energ., 2007, no. 5, p. 140.

  15. Raznikov, V.V., Zelenov, V.V., Aparina, E.V., et al., Izv. Ross. Akad. Nauk, Energ., 2012, no. 3, p. 3.

  16. Raznikov, V.V. and Zelenov, V.V., Int. J. Mass Spectrom. Ion Processes, 2012, vol. 325-327, p. 86.

    Article  CAS  Google Scholar 

  17. Raznikov, V.V., Zelenov, V.V., Aparina, E.V., et al., J. Anal. Chem., 2017, vol. 72, p. 1345.

    Article  CAS  Google Scholar 

  18. Raznikov, V.V., Zelenov, V.V., and Aparina, E.V., J. Anal. Chem., 2017, vol. 72, p. 1390.

    Article  CAS  Google Scholar 

  19. Raznikov, V.V., Raznikova, M.O., and Sulimenkov, I.V., Anal. Bioanal. Chem., 2019, vol. 411, no. 24, p. 6409.

    Article  CAS  Google Scholar 

  20. Raznikov, V.V., Zelenov, V.V., Aparina, E.V., et al., RF Patent 2640393, Byull. Izobret., 2018, no. 1.

  21. Raznikov, V.V., Zelenov, V.V., Aparina, E.V., et al., Eur. J. Mass Spectrom., 2017, vol. 23, no. 4, p. 181.

    Article  CAS  Google Scholar 

  22. Dodonov, A.F., Chernushevich, I.V., Dodonova, T.F., et al., USSR Inventor’s Certificate no. 1681340 SSSR, Byull. Izobret., 1991, no. 36.

  23. Dodonov, A., Loboda, A., Kozlovski, V., et al., Eur. J. Mass Spectrom., 2000, vol. 6, no. 6, p. 481.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.A. Balakin for the fruitful discussion in this work.

Funding

This work was partially supported by a grant from the Presidium of the Russian Academy of Sciences within the framework of subprogram 14.3 of fundamental research of the Presidium of the Russian Academy of Sciences, as well as by the Program of Fundamental Research of the Russian Academy of Sciences 2013–2020 (topic AAAA-A18-118112690060-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Raznikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raznikov, V.V., Zelenov, V.V., Aparina, E.V. et al. A New Approach to the Mass Spectrometric Analysis of Aqueous Electrolyte Solutions Using a Gas-Dynamic Interface with a Gas Jet at the Inlet of a Time-of-Flight Mass Spectrometer with Orthogonal Ion Injection. J Anal Chem 76, 1505–1511 (2021). https://doi.org/10.1134/S1061934821130104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821130104

Keywords:

Navigation