Abstract
The properties of hexarhenium chalcogenide nanoclusters (K4[{Re6S8}(OH)6]·8H2O and K4[{Re6S8}(CN)6]·8H2O) in combination with carbon nanomaterials (carbon nanotubes and graphene oxide) are studied by voltammetry, electrochemical impedance spectroscopy, atomic force microscopy, and spectrophotometry and their screening is performed for use as hybrid modifiers of screen-printed graphite electrodes in immunosensors in order to improve analytical characteristics. The high negative charge of nanoclusters can be considered the driving force of the adsorption of clusters in the formation of electrodes modified by hybrid nanomaterials. It was found that hexarhenium chalcogenide nanoclusters possess electrochemical activity, which was first used to register immunochemical interactions. The change in the resistance of electron transfer made it possible to choose the best hybrid nanomaterials. The parameters of the surface roughness of the modified electrodes associated with the height properties of the irregularities were estimated. The use of hexarhenium chalcogenide nanoclusters in combination with carbon nanomaterials as hybrid nanomodifiers has made it possible to develop highly sensitive and selective amperometric and impedimetric immunosensors for the determination of tricyclic antidepressants (amitriptyline, desipramine, and imipramine) in pharmaceuticals and urine. The limit of quantification (LOQ) is at the level (4–7) × 10–11 M. The relative standard deviation does not exceed 5%.





Similar content being viewed by others
REFERENCES
Kurbanoglu, S., Unal, M.A., and Ozkan, S.A., Electrochim. Acta, 2018, vol. 287, p. 135.
Frangu, A., Pravcová, K., Šilarová, P., Arbneshi, T., and Sýs, M., Anal. Bioanal. Chem., 2019, vol. 411, no. 11, p. 2415.
Santos, A.M., Silva, T.A., Vicentini, F.C., and Fatibello-Filho, O., Arabian J. Chem., 2020, vol. 13, no. 1, p. 335.
Farnoudian-Habibi, A., Massoumi, B., and Jaymand, M., Spectrochim. Acta, Part A, 2016, vol. 168, p. 235.
Safari, M., Shahlaei, M., Yamini, Y., Shakorian, M., and Arkan, E., Anal. Chim. Acta, 2018, vol. 1034, p. 204.
Rysavá, L., Dvorák, M., and Kubán, P., J. Chromatogr. A, 2019, vol. 1596, p. 226.
de Oliveira, F.M., Scheel, G.L., Augusti, R., Tarley, C.R.T., and Nascentes, C.C., Anal. Chim. Acta, 2020, vol. 1106, p. 52.
Feng, Y., Zheng, M., Zhang, X., Kang, K., Kang, W., Lian, K., and Yang, J., J. Chromatogr. A, 2019, vol. 1600, p. 33.
Kasagic-Vujanovic, I. and Jancic-Stojanovic, B., J. Pharm. Biomed. Anal., 2019, vol. 173, p. 86.
Karami, M. and Yamini, Y., Anal. Chim. Acta, 2020, vol. 1105, p. 95.
Li, H., Xu, B., Wang, D., Zhou, Y., Zhang, H., Xia, W., Xu, S., and Li, Y., J. Biotechnol., 2015, vol. 203, p. 97.
Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., Medvedeva, O.I., Kutyreva, M.P., Ulakhovich, N.A., Fattakhova, A.N., Konovalova, O.A., and Budnikov, H.C., Russ. J. Appl. Chem., 2017, vol. 90, no. 1, p. 97.
Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., Maksimov, A.A., Konovalova, O.A., and Budnikov, H.C., J. Anal. Chem., 2017, vol. 72, no. 4, p. 362.
Othman, A.M. and Wollenberger, U., Int. J. Biol. Macromol., 2020, vol. 153, p. 855.
Fiorani, A., Merino, J.P., Zanut, A., Criado, A., Valenti, G., Prato, M., and Paolucci, F., Curr. Opin. Electrochem., 2019, vol. 16, p. 66.
Elistratova, J.G., Mustafina, A.R., Brylev, K.A., Petrov, K.A., Shestopalov, M.A., Mironov, Y.V., Babaev, V.M., Rizvanov, I.K., Massonc, P., and Sinyashina, O.G., Analyst, 2016, vol. 141, no. 13, p. 4204.
Patel, H., Rawtani, D., and Agrawal, Y.K., Trends Food Sci. Technol., 2019, vol. 85, p. 78.
Farias, E.D., Passeggi, M.C.G., and Brunetti, V., Eur. Polym. J., 2018, vol. 102, p. 68.
Medyantseva, E.P., Brusnitsyn, D.V., Varlamova (Beilinson), R.M., Konovalova, O.A., and Budnikov, H.C., Inorg. Mater., 2019, vol. 55, no. 14, p. 1390.
Krasilnikova, A.A., Solovieva, A.O., Ivanov, A.A., Trifonova, K.E., Pozmogova, T.N., Tsygankova, A.R., Smolentsev, A.I., Kretov, E.I., Sergeevichev, D.S., Shestopalov, M.A., Mironov, Y.V., Shestopalov, A.M., Poveshchenko, A.F., and Shestopalova, L.V., Nanomedicine, 2017, vol. 13, no. 2, p. 755.
Yarovoi, S.S., Mironov, Y.V., Naumov, D.Y., Gatilov, Y.V., Kozlova, S.G., Kim, S.J., and Fedorov, V.E., Eur. J. Inorg. Chem., 2005, vol. 19, no. 19, p. 3945.
Ivanov, A.A., Falaise, C., Abramov, P.A., Shestopalov, M.A., Kirakci, K., Lang, K., Moussawi, M.A., Sokolov, M.N., Naumov, N.G., Floquet, S., Landy, D., Haouas, M., Brylev, K.A., Mironov, Y.V., Molard, Y., Cordier, S., and Cadot, E., Chem.-Eur. J., 2018, vol. 24, no. 51, 13467.
Ziganshin, M.A., Safiullina, A.S., Gerasimov, A.V., Ziganshina, S.A., Klimovitskii, A.E., Khayarov, K.R., and Gorbatchuk, V.V., J. Phys. Chem. B, 2017, vol. 121, no. 36, p. 8603.
Ziganshin, M.A., Morozova, A.S., Ziganshina, S.A., Vorobev, V.V., Suwinska, K., Bukharaev, A.A., and Gorbatchuk, V.V., Mol. Cryst. Liq. Cryst., 2019, vol. 690, no. 1, p. 67.
Brylev, K.A., Mironov, Y.V., Yarovoi, S.S., Naumov, N.G., Fedorov, V.E., Kim, S.J., Kitamura, N., Kuwahara, Y., Yamada, K., Ishizaka, S., and Sasak, Y., Inorg. Chem., 2007, vol. 46, no. 18, p. 7414.
Naumov, N., Ostanina, E.V., Virovets, A.V., Schmidtman, M., Müller, A., and Fedorov, V., Russ. Chem. Bull., 2002, vol. 51, no. 5, p. 799.
Medyantseva, E.P., Brusnitsyn, D.V., Gazizullina, E.R., Varlamova (Beilinson), R.M., Konovalova, O.A., and Budnikov, H.C., J. Anal. Chem., 2020, vol. 75, no. 4, p. 536.
Komarova, N.V., Andrianova, M.S., Savel’ev, M.I., and Kuznetsov, A.E., Moscow Univ. Chem. Bull. (Engl. Transl.), 2016, vol. 71, no. 1, p. 25.
GOST (State Standard) 25142-82: Surface Roughness. Terms and Definitions, Moscow: Standartinform, 2018.
Budnikov, H.C., Maistrenko, V.N., and Vyaselev, M.R., Osnovy sovremennogo elektrokhimicheskogo analiza (Fundamentals of Modern Electrochemical Analysis), Moscow: BINOM, 2003.
State Pharmacopoeia of the Russian Federation XIV, Moscow, 2018, 14 ed., vol. 3.
Pietrzynska, M. and Voelkel, A., Microchem. J., 2017, vol. 134, no. 6, p. 197.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by V. Kudrinskaya
Rights and permissions
About this article
Cite this article
Medyantseva, E.P., Gazizullina, E.R., Brusnitsyn, D.V. et al. Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants. J Anal Chem 76, 1455–1467 (2021). https://doi.org/10.1134/S1061934821120078
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1061934821120078


