Skip to main content
Log in

A New Spectrophotometric Method for Thorium Determination Using 1,4-Dihydroxyanthraquinone

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A new reagent, 1,4-dihydroxyanthraquinone (1,4-DHA), is described for the spectrophotometric determination of thorium(IV). Optimization of the formed thorium−1,4-DHA complex was performed by studying several parameters such as methanol concentration, suitable pH, dye concentration, temporal stability of the formed complex and thorium concentration (calibration curve). The optimized method was applied to different rock types bearing thorium with good accuracy results. This reagent is highly sensitive toward thorium; thorium complex has a molar absorptivity of 1.82 × 104 L/(mol cm) at 600 nm and pH 3.25. Beer’s law was obeyed in the range from 0.9 to 20 µg/mL for Th(IV). The tolerance limits for several metal ions were calculated and gave high tolerance limit especially for uranium. Details are given for the estimation of thorium in standard reference and natural rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Daneshvar, G., Jabbari, A., Yamini, Y., and Paki, D., J. Anal. Chem., 2009, vol. 64, p. 602.

    Article  CAS  Google Scholar 

  2. Zoriy, P., Ostapczuk, P., Dederichs, H., Hobig, J., Lennartz, R., and Zoriy, M., J. Environ. Radioact., 2010, vol. 101, p. 414.

    Article  CAS  PubMed  Google Scholar 

  3. Abdul-Hadi, A., Al-Qadhi, W., and El-Zeen, E., J. Radioanal. Nucl. Chem., 2011, vol. 290, p. 261.

    Article  CAS  Google Scholar 

  4. Avivar, J., Ferrer, L., Casas, M., and Cerdà, V., J. Anal. At. Spectrom., 2012, vol. 27, p. 327.

    Article  CAS  Google Scholar 

  5. Krejčová, A., Černohorský, T., and Pouzar, M., Int. J. Environ. Anal. Chem., 2012, vol. 92, p. 620.

    Article  CAS  Google Scholar 

  6. Souza, S., Ávila, D., Monteiro, A., Garcia, A., Alves, J., Maranhão, T., and Araujo, R., J. Braz. Chem. Soc., 2016, vol. 27, p. 799.

    CAS  Google Scholar 

  7. Rezaee, M. and Khalilian, F., Quim. Nova, 2016, vol. 39, no. 2, p. 167.

    CAS  Google Scholar 

  8. Sathyapria, R.S., Rao, D.D., and Prabhath, R.K., Radiat. Prot. Environ., 2017, vol. 40, p. 90.

    Article  Google Scholar 

  9. Lim, S., Park, R., Choi, E., Han, S., Park, J., and Lee, C., J. Radioanal. Nucl. Chem., 2017, vol. 314, p. 2047.

    Article  CAS  Google Scholar 

  10. Sergani, F.M., Abdelbagi, A.M., and Shokali, A.A., J. Nucl. Energy Sci. Power Gener. Technol., 2017, vol. 6, p. 1.

    Google Scholar 

  11. Ito, S., Takaku, Y., Ikeda, M., and Kishimoto, Y., Prog. Theor. Exp. Phys., 2017, vol. 113H01, p. 1.

  12. Ali, M.M., Issa, Y.M., Abdel-Hamied, M.A., and Rezk, A.A., Egypt. J. Anal. Chem., 1998, vol. 5, p. 36.

    Google Scholar 

  13. Banerjee, G., Anal. Chim. Acta, 1957, vol. 16, p. 62.

    Article  CAS  Google Scholar 

  14. Marczenko, Z., Spectrophotometric Determination of Elements, New York: Wiley, 1986.

    Google Scholar 

  15. Khan, M., Ali, A., and Khan, N., J. Radioanal. Nucl. Chem., 2001, vol. 250, p. 353.

    Article  CAS  Google Scholar 

  16. Niazi, A., Ghasemi, N., Goodarzi, M., and Ebadi, A., J. Chin. Chem. Soc., 2007, vol. 54, p. 411.

    Article  CAS  Google Scholar 

  17. Sharma, C. and Eshwar, M., J. Radioanal. Nucl. Chem., 1985, vol. 91, p. 323.

    Article  CAS  Google Scholar 

  18. Martinez-Calatayud, J., Pascual-Marti, M., Palau-Contell, M., Martinez-Cervera, J., and Martinez-Palmer, F., Quim.-Anal., 1987, vol. 6, p. 333.

    CAS  Google Scholar 

  19. Yang, Y.L., Hsu, C.G., and Pan, J.M., Microchem. J., 1993, vol. 84, no. 2, p. 178.

    Article  Google Scholar 

  20. Khalifa, M.E. and Hafez, M.A., Talanta, 1998, vol. 47, p. 547.

    Article  CAS  PubMed  Google Scholar 

  21. Amin, A.S. and Mohammed, T.V., Talanta, 2001, vol. 54, p. 611.

    Article  CAS  PubMed  Google Scholar 

  22. Upase, A. and Zade, A., J. Indian Chem. Soc., 2005, vol. 82, p. 853.

    CAS  Google Scholar 

  23. Upase, A., Zade, A., and Kalbende, P., Eur. J. Chem., 2011, vol. 8, p. 1132.

    CAS  Google Scholar 

  24. Vallinath, G.V., Chandrasekhar, K.B., and Devanna, N., Int. J. Pharm. Qual. Assur., 2010, vol. 2, no. 1, p. 67.

    Google Scholar 

  25. Reddy, G., Devanna, V., and Chandrasekhar, K.B., Int. J. Appl. Biol. Pharm. Technol., 2011, vol. 2, no. 2, p. 133.

    Google Scholar 

  26. Shiri, S., Delpisheh, A., Haeri, A., Poornajaf, A., Khezeli, T., and Badkiu, N., Anal. Chem. Insights, 2011, vol. 6, p. 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Al-Kady, A.S., Sens. Actuators, B, 2012, vol. 166–167, p. 485.

    Article  CAS  Google Scholar 

  28. Devi, A.V. and Reddy, V.K., J. Chem., 2013, vol. 2013, 697379.

    Google Scholar 

  29. Swetha, M. and Reddy, R., Exp. J., 2014, vol. 19, no. 2, p. 1330.

    Google Scholar 

  30. Khan, M., Hafeez, M., Bukhari, S., and Ali, A., J. Radioanal. Nucl. Chem., 2014, vol. 301, p. 703.

    Article  CAS  Google Scholar 

  31. Reddy, V.B., Saritha, B., Giri, A., and Reddy, T.S., Int. J. Adv. Pharm., Biol. Chem., 2014, vol. 3, no. 3, p. 667.

    CAS  Google Scholar 

  32. Fouad, H., Abu Elenein, S., Elrakaiby, R., and Abdulmoteleb, S., Int. J. Sci. Res., 2015, vol. 4, p. 1611.

    Google Scholar 

  33. Tran, Q., Le, V., and Nguyen, V., J. Chem., 2016, vol. 2016, 5078462.

    Google Scholar 

  34. Orabi, A., Hassanin, M., and Hassan, S., Chem. Data Collect., 2018, vols. 13–14, p. 84.

    Google Scholar 

  35. Diaz, A.N., Talanta, 1991, vol. 38, p. 571.

    Article  CAS  PubMed  Google Scholar 

  36. Gámiz Gracia, L., Guadros Rodriguez, L., and Román Ceba, M., Talanta, 1997, vol. 44, p. 75.

    Article  Google Scholar 

  37. Fouad, D., Ismail, N., El-Gahami, M., and Ibrahim, S., Spectrochim. Acta, Part A, 2007, vol. 67, p. 564.

    Article  CAS  Google Scholar 

  38. Sedaira, H., Idriss, K.A., Seleim, M.M., and Abdel-Aziz, M.S., Monatsh. Chem., 1998, vol. 129, p. 49.

    Article  CAS  Google Scholar 

  39. Shokrollahi, A. and Aghaei, R., Environ. Monit. Assess, 2014, vol. 186, p. 1113.

    Article  CAS  PubMed  Google Scholar 

  40. del Fattah, N., Sadeek, A., Ali, B.A., and Weheish, H., Int. J. Sci. Technol., 2016, vol. 4, p. 180.

    Google Scholar 

  41. Sanchez, F., Lopez, M., and Gomez, L., Talanta, 1987, vol. 34, p. 639.

    Article  CAS  PubMed  Google Scholar 

  42. Anusuya, D.V., Parashuram, L., and Govinda, C.P., Pharm. Lett., 2016, vol. 8, no. 9, p. 307.

    Google Scholar 

  43. Afifi, S., Mustafa, M., El Sheikh, E., and Gado, M., Arab. Sci. Nucl. Sci. Appl., 2012, vol. 45, no. 3, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed H. Orabi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orabi, A.H., Abdou, A.A., Ahmed, S.H. et al. A New Spectrophotometric Method for Thorium Determination Using 1,4-Dihydroxyanthraquinone. J Anal Chem 76, 322–329 (2021). https://doi.org/10.1134/S1061934821030072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821030072

Keywords:

Navigation